129 research outputs found

    Note on ''Generalized Hukuhara differentiability of interval-valued functions and interval differential equations''

    Get PDF
    There are some mistakes in one of the papers of Luciano Stefanini and Barnabas Bede . In this article we are going to show that the case (ii)(ii) of proposition 24 in is incorrect. The corrected form is proposed in details

    Fuzzy Efficiency Measure with Fuzzy Production Possibility Set

    Get PDF
    The existing data envelopment analysis (DEA) models for measuring the relative efficiencies of a set of decision making units (DMUs) using various inputs to produce various outputs are limited to crisp data. The notion of fuzziness has been introduced to deal with imprecise data. Fuzzy DEA models are made more powerful for applications. This paper develops the measure of efficiencies in input oriented of DMUs by envelopment form in fuzzy production possibility set (FPPS) with constant return to scale

    Numerical Solution of Time-Fractional Order Telegraph Equation by Bernstein Polynomials Operational Matrices

    Get PDF
    We present a new method to solve time-fractional order telegraph equation (TFOTE) by using Bernstein polynomials. By implementation of Bernstein polynomials operational matrices of fractional differential on TFOTE, we reduce the original problem to a linear system of algebraic equations. Also, we prove the convergence analysis. In order to show the efficiency of the proposed method, we present two numerical examples

    A New Method for Defuzzification and Ranking of Fuzzy Numbers Based on the Statistical Beta Distribution

    Get PDF
    Granular computing is an emerging computing theory and paradigm that deals with the processing of information granules, which are defined as a number of information entities grouped together due to their similarity, physical adjacency, or indistinguishability. In most aspects of human reasoning, these granules have an uncertain formation, so the concept of granularity of fuzzy information could be of special interest for the applications where fuzzy sets must be converted to crisp sets to avoid uncertainty. This paper proposes a novel method of defuzzification based on the mean value of statistical Beta distribution and an algorithm for ranking fuzzy numbers based on the crisp number ranking system on R. The proposed method is quite easy to use, but the main reason for following this approach is the equality of left spread, right spread, and mode of Beta distribution with their corresponding values in fuzzy numbers within (0,1) interval, in addition to the fact that the resulting method can satisfy all reasonable properties of fuzzy quantity ordering defined by Wang et al. The algorithm is illustrated through several numerical examples and it is then compared with some of the other methods provided by literature

    On Solutions of Linear Fractional Differential Equations with Uncertainty

    Get PDF
    The solutions of linear fuzzy fractional differential equations (FFDEs) under the Caputo differentiability have been investigated. To this end, the fuzzy Laplace transform was used to obtain the solutions of FFDEs. Then, some new results regarding the relation between some types of differentiability have been obtained. Finally, some applicable examples are solved in order to show the ability of the proposed method

    Fuzzy Modeling for Uncertain Nonlinear Systems Using Fuzzy Equations and Z-Numbers

    Get PDF
    In this paper, the uncertainty property is represented by Z-number as the coefficients and variables of the fuzzy equation. This modification for the fuzzy equation is suitable for nonlinear system modeling with uncertain parameters. Here, we use fuzzy equations as the models for the uncertain nonlinear systems. The modeling of the uncertain nonlinear systems is to find the coefficients of the fuzzy equation. However, it is very difficult to obtain Z-number coefficients of the fuzzy equations. Taking into consideration the modeling case at par with uncertain nonlinear systems, the implementation of neural network technique is contributed in the complex way of dealing the appropriate coefficients of the fuzzy equations. We use the neural network method to approximate Z-number coefficients of the fuzzy equations
    • …
    corecore