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Abstract
In this paper the second-order random fuzzy differential equations (SRFDEs) under
generalized Hukuhara differentiability are introduced. Under suitable conditions we
obtain the existence and uniqueness results of solutions to an SRFDE. To prove this
assertion we use the idea of successive approximations. Some examples are given to
illustrate these results.
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1 Introduction
The study of fuzzy differential equations (FDEs) forms a suitable setting for the mathemat-
ical modeling of real-world problems in which uncertainties or vagueness pervade. Most
practical problems can be modeled as FDEs [, ]. Therefore, FDEs are a very important
topic both in theory and application, for example, in population models, in engineering,
in chaotic systems and in modeling hydraulics. Differentiability of fuzzy-valued functions
was first introduced by Chang and Zadeh [], and followed by Dubois and Prade [], who
defined and used the extension principle []. Other approaches have been discussed by
Puri and Ralescu [], which generalized and extended the concept of Hukuhara differen-
tiability for set-valued mappings to the class of fuzzy mappings. In this setting the fuzzy
differential equations can be viewed as an abstract differential equation via embedding the
fuzzy number space into Banach space. In this framework, many papers concerned with
the existence and uniqueness problems. The problem of the existence and uniqueness be-
gins with the investigations of Kaleva (see []) for the fuzzy Volterra integral equation
that is equivalent to the initial value problem for fuzzy differential equations, where the
Lipschitz condition and the Banach fixed point theorem and the method of successive
approximations are applied in the problem of the existence and uniqueness of the solu-
tion. Wu et al. [, ] and Song and Wu [] changed the initial value problem of fuzzy
differential equations into abstract differential equations on a closed convex cone in a Ba-
nach space by the operator j, that is, the isometric embedding from (Ed, D) onto its range
in the Banach space X. They established the relationship between a solution and its ap-
proximate type and dissipative-type conditions. Lupulescu [] established a new concept
of inner product on the fuzzy space. By help of these concepts author formulated some
dissipative conditions for fuzzy initial value problem and, under these conditions, author
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established the global existence and uniqueness of a solution of fuzzy differential equa-
tions. In the last few years, many researchers have worked on the theoretical of fuzzy dif-
ferential equations [–] and other recent works such as the study of some topological
properties and structure of the solutions to the Cauchy problem for fuzzy differential sys-
tems (see [, ]). Subsequently, some very important extensions of the fuzzy differential
equations based on H-derivative are the fuzzy functional differential equations [], the
random fuzzy differential equations [], the fuzzy neutral differential equations [], and
the fuzzy fractional differential equations [, ]. However, the approach using Hukuhara
differentiation suffers a grave disadvantage, i.e., the solution has the property that the di-
ameter diam[x(t)]α is nondecreasing in t, and so it is very hard to get any deep results on
qualitative theory for fuzzy differential equations, such as asymptotic property, periodic-
ity, bifurcation. Furthermore, Bede [] proved that a large class of two-point boundary
value problems have no solutions at all under H-differentiability.

Recently, Bede et al. [–] and Stefanini and Bede [] solved the above mentioned
approach under strongly generalized differentiability of fuzzy-number-valued functions
and studied fuzzy initial valued for the fuzzy differential equations involving strongly gen-
eralized differentiability. In this case the derivative exists and the solutions of fuzzy differ-
ential equations may have decreasing diameters, but the uniqueness is lost. Thus, almost
all important discussions on the qualitative problems for FDEs are deduced in the frame-
work of this approach (see [, , ]). Therefore, our point is that the generalization of
the concept of H-differentiability can be of great help in the dynamic study of fuzzy differ-
ential equations and random fuzzy problems. In [], first-order linear fuzzy differential
equation under generalized differentiability concept are considered and solutions of this
problem in some especial cases were presented. See also [, ] Malinowski studied two
kinds of solutions to random fuzzy initial value problem under strongly generalized differ-
entiability. In [] a linear fuzzy nuclear decay equation under generalized differentiability
is studied and numerical solutions are found. Meanwhile, Allahviranloo et al. [–] and
Khastan et al. [] have solved these FDEs in the sense of generalized derivatives. Subse-
quently, some extensions of the fuzzy differential equations based on generalized differen-
tiability are the fuzzy functional integro-differential equations [] and the random fuzzy
integro-differential equations [–].

Random fuzzy differential equations (RFDEs) deal with the real phenomena, not only
with randomness but also with fuzziness. Puri and Ralescu introduced a fuzzy-set-valued
random variable in [], and gave the concept of differentiability by Hukuhara difference
in []. In the literature, one can find various definitions of fuzzy random variables. For
the first time the concept of a fuzzy random variable was proposed by Kwakernaak [].
Further, it was used by Kruse and Meyer []. In [, ], there appear two notions of
measurability of fuzzy mappings. The relations between different concepts of measurabil-
ity for fuzzy random variables are contained in the papers of Colubi et al. [], Terán Agraz
[], López-Díaz and Ralescu []. In this paper, we will use a definition of fuzzy random
variable which was introduced by Puri and Ralescu []. This definition is currently the
one most often used in probabilistic and statistical aspects of the theory of fuzzy random
variables.

In [, ], the authors considered the random fuzzy differential equation with initial
value

x′(t,ω) [t,t+p],P.= fω
(
t, x(t,ω)

)
, x(t,ω) P.= x(ω) ∈ Ed, (.)
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where f : �× [t, t + p]×Ed → Ed and the symbol ′ denotes the fuzzy derivative is under-
stood in the sense of Puri and Ralescu []. Malinowski also showed that if f is continuous
and fω(t, x) satisfies the Lipschitz condition with respect to x, then there exists a unique
local solution for the random fuzzy initial value problem (.). In [] the existence and
uniqueness of the solution for RFDEs with non-Lipschitz coefficients is proven. Further-
more, using generalized Hukuhara differentiability, Malinowski [, ] studied two kinds
of solutions to (.) under condition that the right-hand side of equation is Lipschitzian
and generalized Lipschitz. Author established the local and global existence and unique-
ness results for (.) by using the method of successive approximations. Besides, in fact,
a large class of physically important problem is described by fuzzy random differential
systems. We believed that mathematical models of physical phenomena should have the
properties that existence and uniqueness of solution and the solution’s behavior changes
continuously with the initial conditions. The importance of existence and uniqueness the-
orems in the study of initial value problems is well known due to their relevance in estab-
lishing the well-posedness of the real-world problems arising in physical and engineering
systems. Uniqueness results play a significant role in the continuation of solutions and in
the theory of autonomous systems. While the uniqueness results almost always come at
the cost of stringent conditions, they are valuable, for without such uniqueness results it
is impossible to make predictions about the behavior of physical systems. Therefore, in
this paper, we consider the second-order random fuzzy differential equation initial value
problem of the form

{
D,g

H x(t,ω) [t,t+p],P.= fω(t, x(t,ω), D,g
H x(t,ω)),

x(t,ω) P.= I(ω), D,g
H x(t,ω) P.= I(ω) ∈ Ed,

(.)

where f : � × [t, t + p] × Ed × Ed → Ed and the symbol D,g
H denotes the second-order

generalized Hukuhara derivative. The purpose of this article is to discuss the behaviors
of solutions to the second-order random fuzzy differential equations under generalized
Hukuhara differentiability, such as the existence and uniqueness of solutions, and that the
solution’s behavior changes continuously with the initial conditions, which are important
in the theory of fuzzy stochastic dynamical system analysis.

In this paper, we study four kinds of solutions to SRFDEs. The different types of solutions
to SRFDEs are generated by the usage of two different concepts of the fuzzy derivative.
We were inspired and motivated by the results of Bede and Gal [], Malinowski [, ,
], and Allahviranloo et al. [] concerning deterministic FDEs with generalized fuzzy
derivative and recently by the paper of Stefanini and Bede [] where two types of solutions
to interval differential equations were investigated.

The paper is organized as follows: In Section , we collect the fundamental notions and
facts about fuzzy set space, fuzzy differentiation and integration. We recall the notions of
fuzzy random variable and fuzzy stochastic process. In Section , we discuss the SRFDEs
with two kinds of fuzzy derivatives. For both cases, under suitable conditions we prove
the existence and uniqueness of solutions to SRFDEs by using a contraction principle and
the method of successive approximations. We carry out an analysis of the behavior of the
solutions when data of the equation are subject to errors. In Section , we provide some
examples to illustrate these results.
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2 Preliminaries
In this section, we give some notations and properties related to fuzzy set space, and sum-
marize the major results for integration and differentiation of fuzzy-set-valued mappings.
We recall also the notations of fuzzy random variable and fuzzy stochastic process. Let
Kc(Rd) denote the family of all nonempty, compact and convex subsets of Rd . The addi-
tion and scalar multiplication in Kc(Rd) are defined as usual, i.e., for A, B ∈ Kc(Rd) and
λ ∈R,

A + B = {a + b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A}.

The Hausdorff distance or Pompeiu-Hausdorff distance dH in Kc(Rd) is defined as follows:

dH(A, B) = max
{

sup
a∈A

inf
b∈B

‖a – b‖, sup
b∈B

inf
a∈A

‖a – b‖
}

,

where A, B ∈ Kc(Rd), and ‖ · ‖ denotes usual Euclidean norm in R
d . It is well known (see

[]) that Kc(Rd) is a complete, separable, and locally compact metric space with respect
to dH. Define Ed = {u : Rd → [, ] such that u(z) satisfies (i)-(iv) stated below}:

(i) u is normal, that is, there exists z ∈R
d such that u(z) = ;

(ii) u is fuzzy convex, i.e., u(λz + ( – λ)z) ≥ min{u(z), u(z)} for any z, z ∈R
d and

λ ∈ [, ];
(iii) u is upper semicontinuous;
(iv) [u] = cl{z ∈R

d : u(z) > } is compact, where cl denotes the closure in (Rd,‖ · ‖).
Elements of Ed are often called fuzzy sets of Rd . For α ∈ (, ], define [u]α = {z ∈ R

d |
u(z) ≥ α}. We will call this set an α-cut (α-level set) of the fuzzy set u. For u ∈ Ed

one has [u]α ∈ Kc(Rd) for every α ∈ [, ]. For two fuzzy sets u, u ∈ Ed , we denote
u ≤ u if and only if [u]α ⊂ [u]α . If g : Rd × R

d → R
d is a function then, according

to Zadeh’s extension principle, one can extend (cf. []) g to Ed × Ed → Ed by the formula
g(u, u)(z) = supz=g(z,z) min{u(z), u(z)}. It is well known (see []) that if g is continu-
ous then [g(u, u)]α = g([u]α , [u]α) for all u, u ∈ Ed , α ∈ [, ]. Especially, for addition
and scalar multiplication in fuzzy set space Ed , we have (cf. []): [u + u]α = [u]α + [u]α ,
[λu]α = λ[u]α . In the case d = , the α-cut set of a fuzzy number u is a closed bounded
interval [u(α), u(α)], where u(α) denotes the left-hand endpoint of [u]α and u(α) denotes
the right-hand endpoint of [u]α . It should be noted that, for a ≤ b ≤ c, a, b, c ∈ R, a trian-
gular fuzzy number u = (a, b, c) is given such that u(α) = a + (b – a)α and u(α) = c – (c – b)α
are the endpoints of the α-cut for all α ∈ [, ]. Let us denote by

D[u, u] = sup
{

dH
(
[u]α , [u]α

)
:  ≤ α ≤ 

}

the distance between u and u in Ed , where dH([u]α , [u]α) is the Pompeiu-Hausdorff
distance between two sets [u]α , [u]α of Kc(Rd). In fact (Ed, D) is a complete metric space.
Some properties of metric D are as follows (see e.g. []):

D[u + u, u + u] = D[u, u],

D[λu,λu] = |λ|D[u, u],

D[u + u, u + u] ≤ D[u, u] + D[u, u]
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for all u, u, u, u ∈ Ed and λ ∈ R. It is also known that (Ed, D) is not separable and is
not locally compact (cf. [, ]). Let u, v ∈ Ed . If there exists w ∈ Ed such that u = v + w,
then w is called the H-difference of u, v and it is denoted by u 	 v. Let us remark that
u 	 v 
= u + (–)v. Let us denote ̂ ∈ Ed the zero element of Ed as follows: ̂(z) =  if z = 
and ̂(z) =  if z 
= , where  is the zero element of Rd .

One can verify the following remark (cf. [, ]).

Remark . Let u, u, u, u ∈ Ed .
(P) If u 	 u, u 	 u exist, then D[u 	 u, ̂] = D[u, u] and

D[u 	 u, u 	 u] = D[u, u].
(P) If u 	 u, u 	 u exist, then D[u 	 u, u 	 u] = D[u + u, u + u].
(P) If u 	 u, u 	 (u + u) exist, then there exist (u 	 u) 	 u and

(u 	 u) 	 u = u 	 (u + u).
(P) If u 	 u, u 	 u, u 	 u exist, then there exist (u 	 u) 	 (u 	 u) and

(u 	 u) 	 (u 	 u) = u 	 u.

Further we want to introduce the notions of integrability and differentiability which will
be used in the paper. Let [a, b] ⊂ R be a compact interval, –∞ < a < b < +∞. We recall
some measurability and integrability properties for the fuzzy mappings in [, ].

A fuzzy mapping x : I = [a, b] → Ed is called strongly measurable if for all α ∈ [, ] the
set-valued mapping xα : I → Kc(Rd) defined by xα(t) = [x(t)]α is Lebesgue measurable.
A fuzzy mapping x : I → Ed is called integrably bounded, if there exists an integrable func-
tion h : I →R

+ such that ‖ϕ(t)‖ ≤ h(t), for all ϕ ∈ [x(t)].

Definition . (see Puri and Ralescu []) Let x : I → Ed . The integral of x over I , denoted
by

∫
I x(t) dt, is defined levelwise by the expression

[∫

I
x(t) dt

]α

=
∫

I
xα(t) dt =

{∫

I
ϕ(t) dt

∣∣
∣ ϕ : I →R

d is a measurable selection for xα

}

for all α ∈ (, ].

By virtue of Remark . in [] we have [
∫

I x(t) dt] =
∫

I[x(t)] dt. A strongly measurable
and integrably bounded mapping x : I → Ed is said to be integrable over I if

∫
I x(t) dt ∈ Ed .

We recall (see [, , ]) some properties of integrability for fuzzy mappings.
(P) If x : I → Ed is strongly measurable and integrably bounded, then x is integrable.
(P) If x : I → Ed is continuous, then it is integrable.
(P) If x : I → Ed is continuous, then u(t) =

∫ t
a x(s) ds is Lipschitz continuous on [a, b].

(P) Let x : I → Ed be integrable over I . Then, for any c ∈ (a, b), x is integrable over
[a, c] and [c, b], and

∫ b

a
x(s) ds =

∫ c

a
x(s) ds +

∫ b

c
x(s) ds.

Proposition . can also be found in [].

Proposition . Let x, y : I → Ed be integrable and λ ∈R. Then
(i)

∫ b
a (x(t) + y(t)) dt =

∫ b
a x(t) dt +

∫ b
a y(t) dt;

(ii)
∫ b

a λx(t) dt = λ
∫ b

a x(t) dt;
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(iii) D[x, y] is integrable;
(iv) D[

∫ b
a x(t) dt,

∫ b
a y(t) dt] ≤ ∫ b

a D[x(t), y(t)] dt.

It is well known that the strongly generalized differentiability was introduced in [] and
studied in [, –, , ].

Definition . Let x : [a, b] → Ed and t ∈ [a, b]. We say that x is strongly generalized
differentiable of the first-order differential at t, if there exists D,g

H x(t) ∈ Ed , such that
(i) for all h >  sufficiently small, ∃x(t + h) 	 x(t), ∃x(t) 	 x(t – h) and

lim
h↘

D

[
x(t + h) 	 x(t)

h
, D,g

H x(t)
]

= , lim
h↘

D

[
x(t) 	 x(t – h)

h
, D,g

H x(t)
]

= 

or
(ii) for all h >  sufficiently small, ∃x(t) 	 x(t + h), ∃x(t – h) 	 x(t), and

lim
h↘

D

[
x(t) 	 x(t + h)

–h
, D,g

H x(t)
]

= , lim
h↘

D

[
x(t – h) 	 x(t)

–h
, D,g

H x(t)
]

= 

or
(iii) for all h >  sufficiently small, ∃x(t + h) 	 x(t), ∃x(t – h) 	 x(t), and

lim
h↘

D

[
x(t + h) 	 x(t)

h
, D,g

H x(t)
]

= , lim
h↘

D

[
x(t – h) 	 x(t)

–h
, D,g

H x(t)
]

= 

or
(iv) for all h >  sufficiently small, ∃x(t) 	 x(t + h), ∃x(t) 	 x(t – h), and

lim
h↘

D

[
x(t) 	 x(t + h)

–h
, D,g

H x(t)
]

= , lim
h↘

D

[
x(t) 	 x(t – h)

h
, D,g

H x(t)
]

= .

We say that a function is (i)-differentiable if it is strongly generalized differentiable as in
case (i) of the definition above, etc.

Lemma . (Bede and Gal []) If x(t) = (x(t), x(t), x(t)) is a triangular fuzzy-valued
function, then

(i) if x is (i)-differentiable (i.e., Hukuhara differentiable), then
D,g

H x(t) = (x′
(t), x′

(t), x′
(t));

(ii) if x is (ii)-differentiable, then D,g
H x(t) = (x′

(t), x′
(t), x′

(t)).

Lemma . (Chalco-Cano and Román-Flores []) Let x : I → E be a fuzzy-valued func-
tion and denote [x(t)]α = [x(t,α), x(t,α)] for each α ∈ [, ]. Then:

(i) If x is (i)-differentiable, then x(t,α) and x(t,α) are differentiable functions and
[D,g

H x(t)]α = [x′(t,α), x′(t,α)].
(ii) If x is (ii)-differentiable, then x(t,α) and x(t,α) are differentiable functions and

[D,g
H x(t)]α = [x′(t,α), x′(t,α)].

Theorem . Let x : (a, b) → Ed be (i)-differentiable or (ii)-differentiable on (a, b), and
assume that the derivative D,g

H x is integrable over (a, b). We have
(a) if x is (i)-differentiable on (a, b), then

∫ b
a D,g

H x(t) dt = x(b) 	 x(a);
(b) if x is (ii)-differentiable on (a, b), then

∫ b
a D,g

H x(t) dt = (–)(x(a) 	 x(b)).
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One can obtain a formulation of equivalence between solutions of first-order random fuzzy
differential equations and random fuzzy integral equations (see [, ]).

Lemma . The first-order random fuzzy differential equation

D,g
H x(t,ω) [t,t+p],P.= gω

(
t, x(t,ω)

)
, x(t,ω) P.= x(ω) ∈ Ed, (.)

where gω(·, ·) : [t, t + p] × Ed → Ed is supposed to be continuous with P., is equivalent to
one of the integral equations

x(t,ω) [t,t+p],P.= x(ω) +
∫ t

t

gω

(
s, x(s,ω)

)
ds (.)

for case (i)-differentiability, or

x(t,ω) [t,t+p],P.= x(ω) 	 (–)
∫ t

t

gω

(
s, x(s,ω)

)
ds (.)

for case (ii)-differentiability (where  < r ≤ p such that equation (.) is well defined, i.e.,
the foregoing Hukuhara difference does exist). Moreover, if x : I × � → Ed is a solution
to random fuzzy integral equation (.) (random fuzzy integral equation (.)), then the
function t �→ diam[x(t,ω)]α is nondecreasing (nonincreasing) forP-a.a. ω ∈ � and for every
α ∈ [, ], where diam[x(t,ω)]α denotes the diameter of the set [x(t,ω)]α ∈ Kc(Rd).

In the sequel, we express the definition of second-order strongly generalized differen-
tiability which is proposed in [].

Definition . Let x : (a, b) → Ed and t ∈ (a, b). We say that x is strongly generalized
differentiable of the second-order differential at t, if there exists D,g

H x(t) ∈ Ed , such that
(i) for all h >  sufficiently small, ∃D,g

H x(t + h) 	 D,g
H x(t), ∃D,g

H x(t) 	 D,g
H x(t – h) and

the following limits hold (in the metric D):

lim
h↘

D,g
H x(t + h) 	 D,g

H x(t)
h

= lim
h↘

D,g
H x(t) 	 D,g

H x(t – h)
h

= D,g
H x(t)

or
(ii) for all h >  sufficiently small, ∃D,g

H x(t) 	 D,g
H x(t + h), ∃D,g

H x(t – h) 	 D,g
H x(t), and

the following limits hold (in the metric D):

lim
h↘

D,g
H x(t) 	 D,g

H x(t + h)
–h

= lim
h↘

D,g
H x(t – h) 	 D,g

H x(t)
–h

= D,g
H x(t)

or
(iii) for all h >  sufficiently small, ∃D,g

H x(t + h) 	 D,g
H x(t), ∃D,g

H x(t – h) 	 D,g
H x(t), and

the following limits hold (in the metric D):

lim
h↘

D,g
H x(t + h) 	 D,g

H x(t)
h

= lim
h↘

D,g
H x(t – h) 	 D,g

H x(t)
–h

= D,g
H x(t)

or
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(iv) for all h >  sufficiently small, ∃D,g
H x(t) 	 D,g

H x(t + h), ∃D,g
H x(t) 	 D,g

H x(t – h), and
the following limits hold (in the metric D):

lim
h↘

D,g
H x(t) 	 D,g

H x(t + h)
–h

= lim
h↘

D,g
H x(t) 	 D,g

H x(t – h)
h

= D,g
H x(t).

In this paper we consider only the two first of Definition .. Further, we say that x is
(i-i)-differentiable ((ii-ii)-differentiable) on I , if x and its derivative are differentiable in the
sense (i) (in the sense (ii)) of Definition . and (i) ((ii)) of Definition ., respectively. Sim-
ilarly, we say that x is (i-ii)-differentiable ((ii-i)-differentiable) on I , if x and its derivative
are differentiable in the sense (i) (in the sense (ii)) of Definition . and (ii) ((i)) of Defini-
tion ., respectively.

Similar to Lemma ., we have the following result for second-order derivative under
generalized Hukuhara differentiability.

Theorem . [] Let x : [a, b] → E and D,g
H x : [a, b] → E are two differentiable fuzzy-

valued functions. Moreover, we denote the α-cut representation of the fuzzy-valued function
x(t) by [x(t)]α = [x(t,α), x(t,α)], then:

(a) Let x(t) and D,g
H x(t) be (i)-differentiable, or let x(t) and D,g

H x(t) be (ii)-differentiable;
then: x(t,α), x(t,α) have first-order and second-order derivatives and

[
D,g

H x(t)
]α =

[(
x(t,α)

)′′,
(
x(t,α)

)′′].

(b) Let x(t) be (i)-differentiable and D,g
H x(t) be (ii)-differentiable, or, let x(t) be

(ii)-differentiable and D,g
H x(t) be (i)-differentiable; then x(t,α), x(t,α) have

first-order and second-order derivatives and
[
D,g

H x(t)
]α =

[(
x(t,α)

)′′,
(
x(t,α)

)′′].

For I = [a, b] ⊂ R let C(I, Ed) denote the space of continuous mappings form I to Ed .
Define a metric H in C(I, Ed) by H[z, w] = supt∈[a,b] D[z(t), w(t)], where z, w ∈ C(I, Ed).
It is well known that (C(I, Ed), H) is a complete metric space. Moreover, in vector form,
for Z, W ∈ C(I, Ed × Ed), we define H[Z, W ] = supt∈[a,b] D[Z(t), W (t)], where D[Z, W ] =
max{D[z, w], D[z, w]}, Z = (z, z), W = (w, w) ∈ Ed × Ed . Obviously, the metric
space (C(I, Ed × Ed),H) is a complete space. In addition, throughout this paper, we shall
use the notation

Cl(I, Ed) =
{

x : I → Ed; Di,g
H x is strongly generalized differentiable, differentiable

and continuous for i = , , , where D,g
H x = x

}
,

where strongly generalized differentiability at the endpoints a and b, is interpreted right
and left differentiability at these points, respectively.

Let (�,F ,P) be a complete probability space. A function x : � → Ed is called a fuzzy
random variable, if the set-valued mapping [x(·)]α : � → Kc(Rd) is a measurable multi-
function for all α ∈ [, ], i.e.,

{
ω ∈ � | [x(ω)

]α ∩ B 
= ∅} ∈F

for every closed set B ⊂R
d .
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Definition . (see [, , , ]) A mapping x : [a, b] × � → Ed is said to be a fuzzy
stochastic process if x(·,ω) is a fuzzy-set-valued function with any fixed ω ∈ � (this func-
tion will be called a trajectory), and x(t, ·) is a fuzzy random variable for any fixed t ∈ [a, b],
i.e., x can be thought of as a family {x(t), t ∈ [a, b]} of fuzzy random variables.

Definition . (see [, , , ]) A fuzzy stochastic process x(t,ω) ∈ Ed is called con-
tinuous if there exists � ⊂ � with P(�) =  and such that for every ω ∈ � the trajectory
x(·,ω) is a continuous function on [a, b] with respect to the metric D.

For convenience, from now on, we shall write x(ω) P.= y(ω) to replace P({ω | x(ω) =
y(ω)}) =  for short, where x, y are random elements, and similarly for inequalities. Also we
shall write x(t,ω) [a,b],P.= y(t,ω) to replace P({ω | x(t,ω) = y(t,ω)},∀t ∈ [a, b]) =  for short,
where x, y are some stochastic processes, and similarly for inequalities.

3 Main results
Let t ∈R, p > . In this section, we shall consider again the following initial value problem
for the second-order random fuzzy differential equation:

{
D,g

H x(t,ω) [t,t+p],P.= fω(t, x(t,ω), D,g
H x(t,ω)),

x(t,ω) P.= I(ω), D,g
H x(t,ω) P.= I(ω) ∈ Ed,

(.)

where the symbol D,g
H denotes the second-order strongly generalized differentiable from

Definition ., t ∈ I = [t, t + p], f : � × I × Ed × Ed → Ed . A solution for problem (.)
is a fuzzy stochastic process x ∈ C([t, t + p] × �, Ed) satisfying (.). We say that fuzzy
stochastic process x ∈ C([t, t +p]×�, Ed) is a (i-i)-solution (respectively, (ii-ii)-solution,
(i-ii)-solution and (ii-i)-solution) of (.), if x and D,g

H x are (i)-differentiable (respectively,
x and D,g

H x are (ii)-differentiable, x is (i)-differentiable and D,g
H x is (ii)-differentiable, x is

(ii)-differentiable and D,g
H x is (i)-differentiable) on the entire [t, t + p] and also x and

D,g
H x satisfy (.). A solution x to (.) is unique, if D[x(t,ω), x̂(t,ω)] P.=  for any fuzzy

stochastic process x̂ : [t, t + p] × � → Ed that is a solution to (.).
In the sequel, a similar result can be found in []. One can obtain a formulation of

equivalence between solutions of second-order random fuzzy differential equations and
random fuzzy integral equations.

Theorem . Assume that fω(·, ·, ·) : [t, t + p] × Ed × Ed → Ed is continuous with P..
A fuzzy stochastic process x : [t, t + p] × � → Ed is a solution to the problem (.) if and
only if x ∈ C([t, t + p] × �, Ed) and x satisfies one of the following random fuzzy integral
equations:

(S) x(t,ω) [t,t+p],P.= I(ω) + I(ω)(t – t) +
∫ t

t

(∫ s

t

fω
(
τ , x(τ ,ω), D,g

H x(τ ,ω)
)

dτ

)
ds

if x and D,g
H x are (i)-differentiable;

(S) x(t,ω) [t,t+p],P.= I(ω) 	 (–)
(

I(ω)(t – t)

+
∫ t

t

(∫ s

t

fω
(
τ , x(τ ,ω), D,g

H x(τ ,ω)
)

dτ

)
ds

)
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if x is (i)-differentiable and D,g
H x is (ii)-differentiable;

(S) x(t,ω) [t,t+p],P.= I(ω) + I(ω)(t – t)

	 (–)
∫ t

t

(∫ s

t

fω
(
τ , x(τ ,ω), D,g

H x(τ ,ω)
)

dτ

)
ds

if x is (ii)-differentiable and D,g
H x is (i)-differentiable;

(S) x(t,ω) [t,t+p],P.= I(ω) 	 (–)
(

I(ω)(t – t)

	 (–)
∫ t

t

(∫ s

t

fω
(
τ , x(τ ,ω), D,g

H x(τ ,ω)
)

dτ

)
ds

)

if x and D,g
H x are (ii)-differentiable.

Remark . We can reduce (.) to the following systems of two first-order random fuzzy
differential equations:

{
D,g

H z(t,ω) [t,t+p],P.= z(t,ω),
D,g

H z(t,ω) [t,t+p],P.= fω(t, z(t,ω), z(t,ω)),
(.)

together with the initial conditions

z(t,ω) P.= I(ω), z(t,ω) P.= I(ω). (.)

For convenience, we apply the vector notation Z(t,ω) =
[ z(t,ω)

z(t,ω)
]
, D,g

H Z(t,ω) =
[ D,g

H z(t,ω)

D,g
H z(t,ω)

]
,

and we rewrite the problem (.) and (.) as

D,g
H Z(t,ω) [t,t+p],P.=

[
z(t,ω)

fω(t, z(t,ω), z(t,ω))

]

,

Z(t,ω) =

[
z(t,ω)
z(t,ω)

]
P.=

[
I(ω)
I(ω)

]

.

(.)

We note that problems (.) and (.) are equivalent. Similarly to Lemma ., one can
obtain a formulation of equivalence between solutions of system of two first-order random
fuzzy differential equations and system of random fuzzy integral equations.

Lemma . Let fω(·, ·, ·) : [t, t + p] × Ed × Ed → Ed be continuous with P.. The problem
(.) is equivalent to one of the following random fuzzy integral equations systems:

(K) Z(t,ω) [t,t+p],P.=

[
z(t,ω) +

∫ t
t

z(s,ω) ds
z(t,ω) +

∫ t
t

fω(s, z(s,ω), z(s,ω)) ds

]

(.)

if z and z are (i)-differentiable on [t, t + p];

(K) Z(t,ω) [t,t+p],P.=

[
z(t,ω) +

∫ t
t

z(s,ω) ds
z(t,ω) 	 (–)

∫ t
t

fω(s, z(s,ω), z(s,ω)) ds

]

(.)
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if z is (i)-differentiable and z (ii)-differentiable on [t, t + p];

(K) Z(t,ω) [t,t+p],P.=

[
z(t,ω) 	 (–)

∫ t
t

z(s,ω) ds
z(t,ω) +

∫ t
t

fω(s, z(s,ω), z(s,ω)) ds

]

(.)

if z is (ii)-differentiable and z (i)-differentiable on [t, t + p];

(K) Z(t,ω) [t,t+p],P.=

[
z(t,ω) 	 (–)

∫ t
t

z(s,ω) ds
z(t,ω) 	 (–)

∫ t
t

fω(s, z(s,ω), z(s,ω)) ds

]

(.)

if z and z are (ii)-differentiable on [t, t + p]. Provided these requirements, the above
Hukuhara differences exist.

Proof It is obtained immediately by Theorem . and Lemma .. Indeed, in the sequel
we only prove this for the case z and z are (ii)-differentiable, the proof of the other case
being similar. Assume that Z : [t, t + r] ×� → Ed × Ed is a solution to the problem (.).
Hence z, z are (ii)-differentiable on [t, t + r] and D,g

H Z is integrable as a continuous
function. Applying Theorem . we obtain

Z(t,ω) [t,t+r],P.= Z(t,ω) + (–)
∫ t

t

D,g
H Z(s,ω) ds

or
[

z(t,ω)
z(t,ω)

]
[t,t+r],P.=

[
z(t,ω)
z(t,ω)

]

+ (–)

[∫ t
t

D,g
H z(s,ω) ds

∫ t
t

D,g
H z(s,ω) ds

]

for every (t,ω) ∈ [t, t + r] × �. Since

D,g
H z(s,ω) [t,t],P.= z(t,ω) and D,g

H z(s,ω) [t,t],P.= fω
(
s, z(s,ω), z(s,ω)

)

for t ∈ [t, t + r] we obtain (from Lemma .)
[

z(t,ω)
z(t,ω)

]
[t,t+p],P.=

[
z(t,ω) 	 (–)

∫ t
t

z(s,ω) ds
z(t,ω) 	 (–)

∫ t
t

fω(s, z(s,ω), z(s,ω)) ds

]

.

To show that the opposite implication is true let us assume that z, z : [t, t + r]×� → Ed

are continuous fuzzy stochastic processes and they satisfy equation (.). Equation (.)
allows us to claim that there exist Hukuhara differences

z(t,ω) 	 (–)
∫ t

t

z(s,ω) ds and z(t,ω) 	 (–)
∫ t

t

fω
(
s, z(s,ω), z(s,ω)

)
ds

for every (t,ω) ∈ [t, t + r] × �. Now, let t ∈ [t, t + r) and small positive h such that
(t + h) ∈ [t, t + r] and (t – h) ∈ (t, t + r]. By Remark .(P), we observe that

z(t – h,ω) 	 z(t,ω) (t,t+r],P.=
(

z(t,ω) 	 (–)
∫ t–h

t

z(s,ω) ds
)

	
(

z(t,ω) 	 (–)
∫ t

t

z(s,ω) ds
)
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(t,t+r],P.= (–)
∫ t

t–h
z(s,ω) ds, (.)

z(t – h,ω) 	 z(t,ω) (t,t+r],P.=
(

z(t,ω) 	 (–)
∫ t–h

t

fω
(
s, z(s,ω), z(s,ω)

)
ds

)

	
(

z(t,ω) 	 (–)
∫ t

t

fω
(
s, z(s,ω), z(s,ω)

)
ds

)

(t,t+r],P.= (–)
∫ t

t–h
fω

(
s, z(s,ω), z(s,ω)

)
ds, (.)

and

z(t,ω) 	 z(t + h,ω) (t,t+r],P.= (–)
∫ t+h

t
z(s,ω) ds, (.)

z(t,ω) 	 z(t + h,ω) (t,t+r],P.= (–)
∫ t+h

t
fω

(
s, z(s,ω), z(s,ω)

)
ds. (.)

Therefore, from (.)-(.) we infer that

Z(t – h,ω) 	 Z(t,ω) =

[
z(t – h,ω) 	 z(t,ω)
z(t – h,ω) 	 z(t,ω)

]

[t,t+p],P.=

[
(–)

∫ t
t–h z(s,ω) ds

(–)
∫ t

t–h fω(s, z(s,ω), z(s,ω)) ds

]

(.)

and

Z(t,ω) 	 Z(t – h,ω) =

[
z(t,ω) 	 z(t + h,ω)
z(t,ω) 	 z(t + h,ω)

]

[t,t+p],P.=

[
(–)

∫ t+h
t z(s,ω) ds

(–)
∫ t+h

t fω(s, z(s,ω), z(s,ω)) ds

]

. (.)

Multiplying (.) by 
–h and passing to the limit with h ↘  we have

D

[
z(t,ω) 	 z(t + h,ω)

–h
, z(t,ω)

]

[t,t+p],P.= D

[

h

∫ t+h

t
z(s,ω) ds,


h

∫ t+h

t
z(t,ω) ds

]

[t,t+p],P.≤ 
h

∫ t+h

t
D

[
z(s,ω), z(t,ω)

]
ds

(t,t+r],P.≤ max
s∈[t,t+h]

D
[
z(s,ω), z(t,ω)

] → 

and

D

[
z(t,ω) 	 z(t + h,ω)

–h
, fω

(
t, z(t,ω), z(t,ω)

)]

[t,t+p],P.= D

[

h

∫ t+h

t
fω

(
s, z(s,ω), z(s,ω)

)
ds,


h

∫ t+h

t
fω

(
t, z(t,ω), z(t,ω)

)
ds

]
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[t,t+p],P.≤ 
h

∫ t+h

t
D

[
fω

(
s, z(s,ω), z(s,ω)

)
, fω

(
t, z(t,ω), z(t,ω)

)]
ds

(t,t+r],P.≤ max
s∈[t,t+h]

D
[
fω

(
s, z(s,ω), z(s,ω)

)
, fω

(
t, z(t,ω), z(t,ω)

)] → .

Similar to (.) we obtain

D

[
z(t – h,ω) 	 z(t,ω)

–h
, z(t,ω)

]
(t,t+r],P.→ 

and

D

[
z(t – h,ω) 	 z(t,ω)

–h
, fω

(
t, z(t,ω), z(t,ω)

)
]

(t,t+r],P.→ .

By Definition ., it follows that z and z are (ii)-differentiable, and consequently

D,g
H Z(t,ω) =

[
D,g

H z(t,ω)
D,g

H z(t,ω)

]
[t,t+p],P.=

[
z(t,ω)

fω(t, z(t,ω), z(t,ω))

]

.

The proof is complete. �

The following theorems present the existence and uniqueness results for problem (.).
For the existence and uniqueness, we use the method of successive approximations.

Let us consider the mappings f : �× [t, t + p]×Ed ×Ed → Ed that satisfy the following
assumptions:

(H) the mapping f·(t, u, v) : � → Ed is a fuzzy random variable for every
(t, u, v) ∈ [t, t + p] × Ed × Ed ;

(H) the mapping fω(·, ·, ·) : [t, t + p] × Ed × Ed → Ed is continuous with P.;
(H) there exist two stochastic processes L, L : [t, t + p] × � →R

+ such that L(·,ω),
L(·,ω) are continuous with P. and

D
[
fω(t, u, v), fω(t, u, v)

] ≤ L(t,ω)D[u, u] + L(t,ω)D[v, v]

with P. for every t ∈ [t, t + p].

Theorem . Let I, I : � → Ed be fuzzy random variables. Let f : �× [t, t +p]×Ed ×Ed

satisfies (H), (H), and (H). Moreover, there exists a nonnegative constant Mf such that

D
[
fω(t, u, v), ̂

] [a,a+p],P.≤ Mf (.)

for u, v ∈ Ed . Then the successive approximations given by

Z
 (t,ω) =

[
z

 (t,ω)
z

(t,ω)

]

,

Zn+
 (t,ω) [t,t+p],P.=

[
z

 (t,ω) +
∫ t

t
zn

(s,ω) ds
z

(t,ω) +
∫ t

t
fω(s, zn

 (s,ω), zn
(s,ω)) ds

] (.)
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for case (i-i)-differentiability, and

Z
 (t,ω) =

[
z

 (t,ω)
z

(t,ω)

]

,

Zn+
 (t,ω) [t,t+r],P.=

[
z

 (t,ω) +
∫ t

t
zn

(s,ω) ds
z

(t,ω) 	 (–)
∫ t

t
fω(s, zn

 (s,ω), zn
(s,ω)) ds

] (.)

for case (i-ii)-differentiability, and

Z
 (t,ω) =

[
z

 (t,ω)
z

(t,ω)

]

,

Zn+
 (t,ω) [t,t+r],P.=

[
z

 (t,ω) 	 (–)
∫ t

t
zn

(s,ω) ds
z

(t,ω) +
∫ t

t
fω(s, zn

 (s,ω), zn
(s,ω)) ds

] (.)

for case (ii-i)-differentiability, and

Z
(t,ω) =

[
z

 (t,ω)
z

(t,ω)

]

,

Zn+
 (t,ω) [t,t+r],P.=

[
z

 (t,ω) 	 (–)
∫ t

t
zn

(s,ω) ds
z

(t,ω) 	 (–)
∫ t

t
fω(s, zn

 (s,ω), zn
(s,ω)) ds

] (.)

for case (ii-ii)-differentiability, converge uniformly to four unique solutions Z, Z, Z, and
Z of (.), respectively, provided that the above Hukuhara differences exist, on [t, t + d]
where d = min{p, r, r, r}.

Proof We prove this for the case (ii-ii)-differentiability, the proof of the other cases being
similar. To prove the theorem, we shall use the method of successive approximations. So,
we define again the sequence Zn

 : [t, t + r] × � → Ed × Ed as follows:

Z
(t,ω) =

[
z

 (t,ω)
z

(t,ω)

]

=

[
z(t,ω)
z(t,ω)

]
P.=

[
I(ω)
I(ω)

]

,

and, for n ∈N,

Zn+
 (t,ω) =

[
zn+

 (t,ω)
zn+

 (t,ω)

]

[t,t+r],P.=

[
z(t,ω) 	 (–)

∫ t
t

zn
(s,ω) ds

z(t,ω) 	 (–)
∫ t

t
fω(s, zn

 (s,ω), zn
(s,ω)) ds

]

. (.)

Then from (.) we have

D
[
z

(t,ω), z
 (t,ω)

]
= D

[
I(ω) 	 (–)

∫ t

t

I(ω) ds, I(ω)
]

≤
∫ t

t

D
[
I(ω), ̂

]
ds

[t,t+r],P.≤ M(t – t),
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D
[
z

(t,ω), z
(t,ω)

]
= D

[
I(ω) 	 (–)

∫ t

t

fω
(
s, z

 (s,ω), z
(s,ω)

)
ds, I(ω)

]

≤
∫ t

t

D
[
fω

(
s, z

 (s,ω), z
(s,ω)

)
, ̂

]
ds

[t,t+r],P.≤ M(t – t),

where M = max{Mf , D[I(ω), ̂]}. Then we conclude

D
[
Z

(t,ω), Z
(t,ω)

] [t,t+r],P.≤ M(t – t).

Also, from (H) and (.), we deduce that

D
[
z

 (t,ω), z
(t,ω)

]
= D

[
I(ω) 	 (–)

∫ t

t

z
(ω) ds, I(ω) 	 (–)

∫ t

t

z
(s,ω) ds

]

[t,t+r],P.≤ M
(t – t)


,

D
[
z

(t,ω), z
(t,ω)

] ≤ D

[∫ t

t

fω
(
s, z

(ω), z
(ω)

)
ds,

∫ t

t

fω
(
s, z

 (ω), z
(ω)

)
ds

]

[t,t+r],P.≤ L(ω)M(t – t),

where L(ω) = max{supt∈[t,t+r] L(t,ω), supt∈[t,t+r] L(t,ω)}. Then we conclude

D
[
Z

(t,ω), Z
(t,ω)

] [t,t+r],P.≤ M
(
 + L(ω)

) (t – t)

!
.

Continuing this way we get

D
[
Zn+

 (t,ω), Zn
(t,ω)

] [t,t+r],P.≤ M
(
 + L(ω)

)n (t – t)n+

(n + )!
. (.)

We observe that, for every n ∈ {, , , . . .}, the function Zn+
 (·,ω) : [t, t + r] → Ed × Ed

is continuous with P.. Indeed, for t ≤ t ≤ t ≤ t + r, n ∈ {, , , . . .}, we see that

D
[
Zn

(t,ω), Zn
(t,ω)

]
= max

{
D

[
zn

 (t,ω), zn
 (t,ω)

]
, D

[
zn

(t,ω), zn
(t,ω)

]}

[t,t+r],P.≤ M|t – t| < ε,

provided |t – t| < δ, where δ = ε\M, proving that Zn
 is continuous with P. on [t, t + r].

Now, let us fix t ∈ [t, t + r] and consider successively, for n ∈ {, , , , . . .} the functions
Zn

(t, ·) : � → Ed ×Ed defined by (.) are fuzzy random variables for every t ∈ [t, t +r].
Indeed, since z

 (t, ·), z
(t, ·) are random variables. It remains to show the same for the

mappings ω �→ [
∫ t

t
fω(s, zn–

 (s,ω), zn–
 (s,ω)) ds]α is a measurable multifunction with t ∈

[t, t + r], n ∈ {, , , . . .} and α ∈ [, ]. Let α ∈ [, ] be fixed. By virtue of the definition
of a fuzzy integral, the continuity assumption (H) of f and the theorem of Nguyen [],
we derive that

[∫ t

t

fω
(
s, zn–

 (s,ω), zn–
 (s,ω)

)
ds

]α

=
∫ t

t

[
fω

(
s, zn–

 (s,ω), zn–
 (s,ω)

)]α ds
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for every t ∈ [t, t + r]. As the integrand is a multifunction which is continuous in s and
measurable in ω, the mapping ω �→ ∫ t

t
[fω(s, zn–

 (s,ω), zn–
 (s,ω))]α ds is a measurable mul-

tifunction for each α ∈ [, ]. Hence Zn
(t, ·) : � → Ed × Ed is a fuzzy random variables

for every t ∈ [t, t + r]. Consequently, {Zn
}∞n= is a sequence of fuzzy stochastic process.

Now for any n ∈ {, , , . . .} and t ∈ [t, t + r] we shall show that the sequence {Zn
(t,ω)}

is a Cauchy sequence uniformly on the variable t with P. and then {Zn
(·,ω)} is uniformly

convergent with P.. For n > m > , from (.) we obtain

sup
t∈[t,t+r]

D
[
Zn

(t,ω), Zm
 (t,ω)

] P.≤ M
n–∑

i=m

(
 + L(ω)

)i r
i+

(i + )!
.

The almost sure convergence of the series
∑∞

n=( + L(ω))n– rn

n! implies that for any ε > 
we find n ∈N large enough such that, for n, m > n,

D
[
Zn

(t,ω), Zm
 (t,ω)

] P.≤ ε. (.)

Then there exists � ⊂ � such that P(�) =  and for every ω ∈ � the sequence {Zn
(·,ω)}

is uniformly convergent with P.. For ω ∈ � let Ẑ(·,ω) denote its limit. Let us define a
mapping Z : [t, t + r] × � → Ed × Ed as

Z(t,ω) =

{
Ẑ(t,ω) for t ∈ [t, t + r] × �,
̂ for t ∈ [t, t + r] × (�\�).

Then supt∈[t,t+r] D[Zn
(t,ω), Z(t,ω)] P.→  as n → ∞. It is clear that Z : [t, t + r] ×

� → Ed × Ed is in the form

Z(t,ω) =

[
z(t,ω)
z(t,ω)

]
[t,t+r],P.=

[
z(t,ω) 	 (–)

∫ t
t

z(s,ω) ds
z(t,ω) 	 (–)

∫ t
t

fω(s, z(s,ω), z(s,ω)) ds

]

.

According to Lemma ., Z is a solution of the problem (.) for the case (ii-ii)-
differentiability. To prove the uniqueness, let W : [t, t + r] × � → Ed × Ed be a second
solution of the problem (.) for the case (ii-ii)-differentiability on [t, t + r]. Then for
every t ∈ [t, t + r] we have

D
[
Z(t,ω), W(t,ω)

]

= max
{

D
[
z(t,ω), w(t,ω)

]
, D

[
z(t,ω), w(t,ω)

]}

[t,t+r],P.≤ 
(
 + L(ω)

)∫ t

t

max
{

D
[
z(s,ω), w(s,ω)

]
, D

[
z(s,ω), w(s,ω)

]}
ds.

Applying Gronwall’s inequality we can infer that D[Z(t,ω), W(t,ω)] [t,t+r],P.= , which
leads us to the conclusion Z(t,ω) [a,a+p],P.= W(t,ω). This proves the uniqueness of the
solution of the problem (.) for the case (ii-ii)-differentiability on [t, t + r]. The proof
is complete. �

In the sequel, we shall present some examples being simple illustrations of the theory of
second-order random fuzzy differential equations. Let us start the illustrations by consid-
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ering the following SRFDE:

⎧
⎪⎪⎨

⎪⎪⎩

D,g
H x(t,ω) + aD,g

H x(t,ω) + bx(t,ω) [t,t+p],P.= k(t,ω),
x(t,ω) P.= I(ω) ∈ E,
D,g

H x(t,ω) P.= I(ω) ∈ E,

(.)

where a, b are positive constants. Let us denote the α-cut (α ∈ [, ]) of I, I, and x
as [I(ω)]α = [I(ω,α), I(ω,α)], [I(ω)]α = [I(ω,α), I(ω,α)], and [x(t,ω)]α = [x(t,ω,α),
x(t,ω,α)], respectively. Obviously, x(·, ·,α), x(·, ·,α) : [t, t + p]×� →R are crisp stochastic
processes. In the sequel, we shall establish the explicit solution to (.). Our strategy of
solving (.) is based on the choice of the derivative in the fuzzy differential equation. In
order to solve (.) we have three steps: first we choose the type of derivative and change
problem (.) to a system of ODE by using Theorem . and considering initial values.
Second we solve the obtained ODE system. The final step is to find such a domain in which
the solution and its derivatives have valid sets, i.e., we ensure that [x(t,ω,α), x(t,ω,α)],
[x′(t,ω,α), x′(t,ω,α)], and [x′′(t,ω,α), x′′(t,ω,α)] are valid sets.

By using Lemma . and Theorem ., we see that four ODE systems are possible for
problem (.), as follows.

Case : x and D,g
H x are (i)-differentiable

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) + ax′(t,ω,α) + bx(t,ω,α) [t,t+p],P.= k(t,ω,α),
x′′(t,ω,α) + ax′(t,ω,α) + bx(t,ω,α) [t,t+p],P.= k(t,ω,α),
x(t,ω,α) P.= I(ω,α), x(t,ω,α) P.= I(ω,α),
x′(t,ω,α) P.= I(ω,α), x′(t,ω,α) P.= I(ω,α).

(.)

Case : x is (i)-differentiable and D,g
H x is (ii)-differentiable

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) + ax′(t,ω,α) + bx(t,ω,α) [t,t+p],P.= k(t,ω,α),
x′′(t,ω,α) + ax′(t,ω,α) + bx(t,ω,α) [t,t+p],P.= k(t,ω,α),
x(t,ω,α) P.= I(ω,α), x(t,ω,α) P.= I(ω,α),
x′(t,ω,α) P.= I(ω,α), x′(t,ω,α) P.= I(ω,α).

(.)

Case : x is (ii)-differentiable and D,g
H x is (i)-differentiable

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) + ax′(t,ω,α) + bx(t,ω,α) [t,t+p],P.= k(t,ω,α),
x′′(t,ω,α) + ax′(t,ω,α) + bx(t,ω,α) [t,t+p],P.= k(t,ω,α),
x(t,ω,α) P.= I(ω,α), x(t,ω,α) P.= I(ω,α),
x′(t,ω,α) P.= I(ω,α), x′(t,ω,α) P.= I(ω,α).

(.)

Case : x and D,g
H x are (ii)-differentiable

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) + ax′(t,ω,α) + bx(t,ω,α) [t,t+p],P.= k(t,ω,α),
x′′(t,ω,α) + ax′(t,ω,α) + bx(t,ω,α) [t,t+p],P.= k(t,ω,α),
x(t,ω,α) P.= I(ω,α), x(t,ω,α) P.= I(ω,α),
x′(t,ω,α) P.= I(ω,α), x′(t,ω,α) P.= I(ω,α).

(.)
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Remark . If we ensure that the solutions (x(t,ω,α), x(t,ω,α)) of the systems (.),
(.), (.), and (.), respectively, are valid level sets of fuzzy-number-valued func-
tions and if the first-order and second-order derivatives (x′(t,ω,α), x′(t,ω,α)), (x′′(t,ω,α),
x′′(t,ω,α)) are valid level sets of fuzzy-number-valued functions with two kinds differen-
tiability, respectively, then we can construct the solution of equation (.).

Example . Let � = (, ), F -Borel σ -field of subsets of �, P-Lebesgue measure on
(�,F ). Let us consider the second-order random fuzzy differential equation as follows:

D,g
H x(t,ω) [,π/],P.= (–ω, ,ω),

x(,ω) P.= (–ω, ,ω), (.)

D,g
H x(,ω) P.= (–ω, ,ω).

Case : From (.), we get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) [,π/],P.= ω(α – ),
x′′(t,ω,α) [,π/],P.= ω( – α),
x(,ω,α) P.= ω(α – ), x(,ω) P.= ω( – α),
x′(,ω,α) P.= ω(α – ), x′(,ω,α) P.= ω( – α).

(.)

By solving (.), we obtain

[
x(t,ω)

]α =
[
ω(α – ) + ω(α – )t +

ω(α – )t


,ω( – α) + ω( – α)t +

ω( – α)t



]
.

Clearly, x and D,g
H x are (i)-differentiable. Hence, there is an (i-i)-solution in this case. This

solution is shown in Figure .
Case : From (.), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) [,π/],P.= ω(α – ),
x′′(t,ω,α) [,π/],P.= ω( – α),
x(,ω,α) P.= ω(α – ), x(,ω,α) P.= ω( – α),
x′(,ω,α) P.= ω(α – ), x′(,ω,α) P.= ω( – α).

(.)

Figure 1 (i-i)-solution of Example 3.1 in Case 1.
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Figure 2 (i-ii)-solution of Example 3.1 in Case 2.

By solving (.), we get

[
x(t,ω)

]α =
[
ω(α – ) + ω(α – )t +

ω( – α)t


,ω( – α) + ω( – α)t +

ω(α – )t



]
.

Clearly, x is (i)-differentiable and D,g
H x is (ii)-differentiable. Hence, there is an (i-ii)-

solution in this case. This solution is shown in Figure .
Case : From (.), we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) [,π/],P.= ω(α – ),
x′′(t,ω,α) [,π/],P.= ω( – α),
x(,ω,α) P.= ω(α – ), x(,ω,α) P.= ω( – α),
x′(,ω,α) P.= ω( – α), x′(,ω,α) P.= ω(α – ).

(.)

By solving (.), we get

[
x(t,ω)

]α =
[
ω(α – ) + ω( – α)t +

ω( – α)t


,ω( – α) + ω(α – )t +

ω(α – )t



]
.

Since x is not (ii)-differentiable, there is no (ii-i)-solution in this case.
Case : From (.), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) [,π/],P.= ω(α – ),
x′′(t,ω,α) [,π/],P.= ω( – α),
x(,ω,α) P.= ω(α – ), x(,ω,α) P.= ω( – α),
x′(,ω,α) P.= ω( – α), x′(,ω,α) P.= ω(α – ).

(.)

By solving (.), we have

[
x(t,ω)

]α =
[
ω(α – ) + ω( – α)t +

ω(α – )t


,ω( – α) + ω(α – )t +

ω( – α)t



]
.

Notice that, in this case, since x is (ii)-differentiable and D,g
H x is (ii)-differentiable, such a

solution is acceptable. This (ii-ii)-solution is shown in Figure .
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Figure 3 (ii-ii)-solution of Example 3.1 in Case 4.

Example . Let � = (, ), F -Borel σ -field of subsets of �, P-Lebesgue measure on
(�,F ). Let us consider the following second-order random fuzzy differential equa-
tion:

D,g
H x(t,ω) + x(t,ω) [,π/],P.= (,ω, ω),

x(,ω) P.= (–ω, ,ω), (.)

D,g
H x(,ω) P.= (–ω, ,ω).

Case : From (.), we get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) + x(t,ω,α) [,π/],P.= αω,
x′′(t,ω,α) + x(t,ω,α) [,π/],P.= ω( – α),
x(,ω,α) P.= ω(α – ), x(,ω,α) P.= ω( – α),
x′(,ω,α) P.= ω(α – ), x′(,ω,α) P.= ω( – α).

(.)

By solving (.), we obtain

[
x(t,ω)

]α =
[
ωα( + sin t) – ω(sin t + cos t),ω( – α)( + sin t) – ω(sin t + cos t)

]
.

Since D,g
H x is not (i)-differentiable, there is no solution in this case.

Case : From (.), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) + x(t,ω,α) [,π/],P.= αω,
x′′(t,ω,α) + x(t,ω,α) [,π/],P.= ω( – α),
x(,ω,α) P.= ω(α – ), x(,ω,α) P.= ω( – α),
x′(,ω,α) P.= ω(α – ), x′(,ω,α) P.= ω( – α).

(.)

By solving (.), we get

[
x(t,ω)

]α =
[
ωα( + sinh t) – ω(sinh t + cos t),ω( – α)( + sinh t) – ω(sinh t + cos t)

]
.

Since D,g
H x is not (ii)-differentiable, there is no solution in this case.
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Figure 4 (ii-i)-solution of Example 3.2 in Case 3.

Figure 5 (ii-ii)-solution of Example 3.2 in Case 4.

Case : From (.), we obtain
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) + x(t,ω,α) [,π/],P.= αω,
x′′(t,ω,α) + x(t,ω,α) [,π/],P.= ω( – α),
x(,ω,α) P.= ω(α – ), x(,ω,α) P.= ω( – α),
x′(,ω,α) P.= ω( – α), x′(,ω,α) P.= ω(α – ).

(.)

By solving (.), we get
[
x(t,ω)

]α =
[
ωα( – sinh t) + ω(sinh t – cos t),ω( – α)( – sinh t) + ω(sinh t – cos t)

]
.

Notice that, in this case, since x is (ii)-differentiable and D,g
H x is (i)-differentiable, such a

solution is acceptable. This solution is shown in Figure .
Case : From (.), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′(t,ω,α) + x(t,ω,α) [,π/],P.= αω,
x′′(t,ω,α) + x(t,ω,α) [,π/],P.= ω( – α),
x(,ω,α) P.= ω(α – ), x(,ω,α) P.= ω(α – ),
x′(,ω,α) P.= ω(α – ), x′(,ω,α) P.= ω(α – ).

(.)

By solving (.), we have
[
x(t,ω)

]α =
[
ωα( – sin t) + ω(sin t – cos t),ω( – α)( – sin t) + ω(sin t – cos t)

]
.

x and D,g
H x are (ii)-differentiable. Therefore, the obtained (ii-ii)-solution is valid. This so-

lution is shown in Figure .
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4 Conclusions
In this paper, we discussed the local existence and uniqueness results for the second-order
random fuzzy differential equations. Under Lipschitz conditions we obtain the existence
and uniqueness theorems of solution for SRFDE. In future work on SRFDEs, we would
like to study the local and global existence and uniqueness results of solutions for second-
order random fuzzy differential equation under weaker conditions.
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