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We present a new method to solve time-fractional order telegraph equation (TFOTE) by using Bernstein polynomials. By
implementation of Bernstein polynomials operational matrices of fractional differential on TFOTE, we reduce the original problem
to a linear system of algebraic equations. Also, we prove the convergence analysis. In order to show the efficiency of the proposed

method, we present two numerical examples.

1. Introduction

Telegraph equations are hyperbolic partial differential equa-
tions that are applicable in modeling the reaction diffusion
processes in various branches of engineering sciences and
biological sciences. Those equations frequently arise in the
study of wave propagation of electrical signal in a cable of
transmission line and wave phenomena [1-4].

Many authors have used various numerical and analytical
methods to solve the TFOTE. Chen and coworkers derived
the analytical solution of the nonhomogeneous TFOTE by
method of separation of variables [5]. Huang presented a new
analytical solution for three basic problems of time-fractional
telegraph equation. He solved Cauchy and signaling problems
by Laplace and Fourier transforms and the boundary problem
by spatial Sine transform [6]. Dehghan and Shokri developed
anumerical method to solve the one-dimensional hyperbolic
telegraph equation using the collocation points and approxi-
mated the solution by using thin plate spline radial basic func-
tions [7]. Saadatmandi and Dehghan developed a numerical
solution based on Chebyshev tau method [4]. Yousefi in [8]
used Legendre multiwavelet Galerkin method for solving the
hyperbolic telegraph equation. In [9], Das and Gupta used
homotopy analysis method for solving fractional hyperbolic
partial differential equation. In [10], Mollahasani et al. applied
hybrid functions of Legendre polynomials and block pulse

functions to obtain the solution of telegraph equation of frac-
tional order.

In this paper, our study focuses on the time-fractional
telegraph equation of order 2«:
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with the initial and boundary conditions:
u(x,0) = f, (x),
u; (x,0) = f, (),
u(0,6) =g, (t),
u(l,t)=g,().

The right-hand-side function f(x,t) is given, 1/2 < « < 1,
and also a, b, and ¢ are arbitrary positive constants. If &« = 1,
we have one-dimensional hyperbolic telegraph equation.
The rest of this paper is organized as follows: First,
we present some preliminaries in fractional calculus. In
Section 3, we briefly review some general concepts concern-
ing Bernstein polynomials and the Bernstein polynomials
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operational matrix for fractional derivative. In Section 4, the
method is applied to solve linear TFOTE. Section 5 exhibits
an error estimation for the presented method. Section 6
illustrates two numerical examples to show the convergence
and accuracy of the proposed method.

2. Basic Definitions

In this section, we present some basic definitions and prop-
erties of the fractional calculus which are going to be used in
this paper.

Definition I (see [11]). The Riemann-Liouville fractional inte-
gral operator I* of order a > 0 on the Lebesgue space L' [a, b]
is given by

1
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where I'(-) denotes Euler Gamma function.

Definition 2 (see [11]). The Caputo fractional derivative of
order « is defined by

R | AN G
D0 =1"Df 0= s | e "
n-1<a<mn neN,

where « > 0 and n is the smallest integer greater than a. For
the Caputo derivative, we have

r(B+1) fa
D ={T(B+1-a) B €Ny B=[al,
0 B €Ny B<al, ®)
D% =0 (ceR).

We use the ceiling function [«] to denote the smallest integer
greater than or equal to @ and N, = {0,1,2,...}. If o €
N, the Caputo differential operator coincides with the usual
differential operator of an integer order.

Forn-1 < a < n,n € N, we have the following properties:
DI f () = f (1),
=1 ik
I“Df (1) =f(t)—k;)f( ' (0%) o (6)

t>0.

3. Bernstein Polynomials and Their Properties

3.1. The Definition of Bernstein Polynomials Basis. The Bern-
stein polynomials (BPs) of degree n on the interval [0, 1] are
defined by

B, (x) = <n> X(1-x)"", 0<is<n. )
1
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These polynomials have the following properties on [0, 1]
[12]:

(1) Bi(x) 2 0,i=0,1,...
(2) Yo Bin(x) = 1,
(3) B;,(x) = (1-x)B; , 1 (x)+xB;_, , 1(x),i =0,1,...,n,

(4) B (x) = Y (-DF () (%) xR i= 0,1, n.

.1, x € [0,1],

Theorem 3 (see [13]). Suppose that H = L2[0,1] is a Hilbert
space with the inner product and Y = Span{B,,(x), B, ,(x),
... B, (%)} is a finite dimensional and closed subspace;
therefore, Y is a complete subspace of H. So, if f is an arbitrary
element in H, it has a unique best approximation out of Y such
as y,; that is,

If=wll, <If=»l,, FyeYstVyeY, (8)

where || fll, = V{f, f) and {f,g) = Iol f(t)g(t)dt. So, there

exist unique coefficients ¢y, c,, . . ., ¢, such that

) =y0= ) B (x) =c'p(x), )

i=0

where c” = [¢y,cp5...,c,] and
@ (%) = [By,n (%), By (%),..., B, (x)]" . (10)

Lemma 4 (see [14]). If ¢(x) = [By,,(x), B} ,(x),... ,Bn,n(x)]T
is a complete basis, then @(x) = AT, (x), where A is an (n +
1) x (n + 1) upper triangular matrix with

. [n n—i
()0
Aiv1,j41 = i j—i

0 i>j,
fori,j=0,1,...,nand T,(x) = [1,x,x%,...,x"]".

3.2. Function Approximation. A function f(x,t) € L*([0,1]x
[0, 1]) can be expressed in terms of the Bernstein polynomials
basis as

Fat) =3 fiiBin (%) By ()
i=0 j=0
] (12)
=Y Y £;iBi, (x) B, (t) = ¢" (x) Fo (1),
i=0 j=0
where
foo fm fOn
f10 f11 fln
F=1 e (13)
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with
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i,j=0,1,...,n

3.3. Operational Matrix for Fractional Derivative

Theorem 5. Let ¢(x) be n + 1 vector defined in (10); then,
D% (x) =~ APE ¢ (x), (15)

where A, P, and E are (n+1) x(n+1) matrices that A is defined
in (11); P is a diagonal matrix with

r@é+1) .
Py = T+l ) i=[al,....n
E=[E,E,....E,],
Ei :Q_l [EiO’Eil""’Ein]’ (16)

nl(i+j-a+1)

|

1
= i—ap. dx = ,
i Lx n A = at2)

i=[al,...,n, j=0,1,...,n

D“ is called the Bernstein polynomials operational matrix of
fractional derivative [14].

4. Description of the Method

Clearly, u(x,t) € L*([0,1] x [0,1]) can be approximated by
using Bernstein polynomials as

u(x,t) =" (x)Ugp(t), 17)

where ¢(x) and ¢(t) are (n+ 1) vectors defined in (10) and the
unknown U is (1 + 1) X (n + 1) matrix that can be shown as

Ugg Upp **° Uy

U Uy =+ Uy
U=| . - (18)

Up Uy - U

3
Now, we can write
Pu(xt) (9" () Up(®)
o ot
7> (o)) (19)
_ T
=¢ (x)U—a o
=¢' (x)UD*¢ (1),
9 (T (x)U
U, (x,1) = ACAOLIC) ();)t 0 () = ¢ (x)UDg (), (20)
Fuet) (9" DUp 1))
oxB oxP
BELICNE
_[ P ] Up®) (1)
- [DPo )] Up(®)
= ¢" () (DF) Up (0).

Substituting (19) and (21) into (1), we have
(pT (x)U [DZ“ +aD" + bI] @)
. (22)
=co’ (x)(D*) Up(t) + f (x,1).

Now, we collocate (22) in (n—1) x (n—1) Newton-Cotes nodes
as

Lo 2i-1

T 2m+1)

_2j-1 (23)
I 2(n+1)

i,j=2,3,...,n
So, we have (n — 1) equations as
R (x,-, tj) =¢" (x)U [Dz“ +aD" + bI] 0] (tj)
—cp” () (D7) U ()~ £ (xut;) @9
=0.

Applying (17) and (20) in the initial and boundary conditions
(2), we get

u(x,0) = 9" (x)Up(0) = f, (x),
u, (x,0) = ¢ (x)UDg (0) = f, (x),

u(0,t) = 9" (0)Up (t) = g, (1),

(25)

u(l,t) =" ()Up(t) = g, (t).

By collocating (25) in Newton-Cotes nodes x; and y; fori =
1,2,...,n+1land j = 1,2,...,n — 1, we get 4n equations.



These equations together with (24) give (n + 1)? equations,
which can be solved for u;, 1, j = 0, 1,..., . So, the unknown
function u(x, t) can be approximated.

5. Convergence Analysis

Theorem 6. Suppose that f : [0,1] x [0,1] — R isa
continuous function and all partial derivatives of f(x,t) exist
and are continuous. Let Y Span{Bm(x)Bjn(t)}, ij =

0, L,..m Ifclo(x,t) = Y1 Yy fiBin(¥)B; (1) € Y is the
best approximation for f out of Y and also all (n + 1)th-order
partial derivatives of f are bounded in magnitude by M, then
the error bound is presented as follows:

n+2

2M (K, +K,)
(n+ DI\NC2n+3)(2n+4)

= max{l — x, X} and K, = max{l —t,, t,}.

26)
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where K,

Proof. By applying the Taylor expansion in two variables for
f(x,t), we have

5]
Fat) = f (x0.t0) + (x = xp) af
X 1(x0,t)
of 1 207 f
t—ty) = — | (x-
+ ( 0) at (xots) 2' [( xO) a 2 (coto)
82f
2(x — —t) —L
+2(x—x) (t-ty) Ot -
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2

f(n,€)
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I
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<
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T+ DP2n+3)2n+4)

Clearly, we obtain the following result:

2M (K, +K,)"?
“f ‘ (P" n+D)INCn+3)2n+4) 30
O

Remark 7. Equation (26) shows that if n — oo, then || f -
CT(/)”Z — 0.

j(”: 1)(x—x0)r (1) 0
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] .
(x05t0)

07" 1 0
#(t-10) 5| F G+ o [ x0)

3
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+(t-t,) + 2 xmx) o
+(t_t0)%]n F (%0 + 0 (x = x), 8

0
. [<x—xo) 2

(-t 205

+0(t—ty) = fi(x, y) +

0(t—t,), 0<O<1.
(27)
Hence, from Taylor expansion, we have
|f (e t) = fi (. 0)]

Since c"¢ is the best approximation for f out of Y, we
conclude that

1

a n+1
o (m+ l)!2 ]

[(x—xo>§+<t—to>a

an+1

ratn+1 T dx dt

f

(29)
2

dxdt = M 3
(n+1)!

”01 '[(x —xo) +(t- to)]””'2 dx dt

6. Numerical Examples

To demonstrate the validity and applicability of the numerical
scheme, we apply the present method for the following
illustrative examples.

Example 1. Consider the time-fractional telegraph equation
of order 2o

0% u (x, 1)
atZOC

+ 20a L;i: D + 25u (x,t)
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TABLE 1: The maximum absolute errors in Example 1.

=1, n=24
% a=1 a =975 a=.925
0.0 87x107° 8.673x107" 1.735x 107" 8.674x 107"
01 29x10™* 5508 x 10  5.550x107* 1.571x107°
02 35x107* 5172x 107 9.255x 107 2.712x 107°
03 3.1x107™* 3284x107°  1.242x107° 3.736x 107°
04 44x107* 1.688x 107  1.580x 10 4.782x107°
05 34x107* 6236x107°  1.921x107° 5829x107°
0.6 25x107* 4501x10°°  2208%x107° 6.702x 107
07 23x107* 2064%x107°  2.330x107°  7.080x 107
08 17x10™* 3.993x 107 2.132x10°  6.503x 107°
09 11x10™* 4562%x107° 1.428x107° 4.382x107°
1.0 40x10°° 1.776 x 107" 2.109x 107" 8.882x107'¢
0%u (x, 1)
=—2 1 f(x,t),
0x? )

u(x,0) = sin (x),

u, (x,0) =0,

u(0,t) =0,

u(1,t) = cos(t)sin(1),

f(x,t) = —20sin (x) sin (¢) + 25 sin (x) cos (t) .

(31

The exact solution of this example is u(x, t) = sin(x) cos(t). In
Table 1, we compare the obtained numerical results with the
method of interpolating scaling functions operational matrix
[15] (ISF), for « = 1. Also, in this table, we present the

maximum absolute errors in t = 0.5 for n = 4 and various
values of .

Example 2. Consider the time-fractional telegraph equation
of order 2a:

0 u (x, 1) 0“u (x,t)
4
o 0 ot

_ 0%u (x, 1)
T ox2

u (x,0) = sinh (x),

+ 100u (x, t)
+f(x1),
(32)
u, (x,0) = —2sinh (x),
u(0,t) =0,
u(1,t) = e *sinh (1),

f(x,t) = 23¢ % sinh (x).

Table 2 shows the absolute errors using the proposed
method in the previous section for « = 0.975 and different
values of n. The exact solution of this equation is u(x,t) =
e sinh(x).

5
TABLE 2: The maximum absolute errors for « = 0.975.

x=t n=3 n=4 n=>5

0.0 4426 x 1074 8.630 x 107" 2.150 x 107°
0.1 7.578 x 107° 6.734x 107 2.965 x 107°
0.2 2117 x107° 1.172 x 107* 2.082x 1074
0.3 5.044 x 107* 1.851x 107° 3.804 x 107
0.4 3.169 x 107* 3.180 x 107* 2.702%x107*
0.5 1.368 x 10~° 1.011 x 107> 3.151 x 1074
0.6 2.990 x 107 1.997 x 107> 1.499 x 1072
0.7 2.689x 107 3270 x 107 3.168 x 107°
0.8 3.304 x 107 6.917 x 107 4472 x107°
0.9 1.212x 107! 2302 % 107 2.676 x 107

7. Conclusion

This paper proposed a numerical approach for solving
TFOTE by using the operational matrices of Bernstein poly-
nomials. The operational matrix of fractional derivative, D%,
as well as collocation method was used to transform the
TFOTE to alinear system of algebraic equations. The numer-
ical results show that the proposed method in this paper can
be a suitable method for solving these equations. To obtain
the numerical results, we applied Mathematica 9 software.
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