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We present a new method to solve time-fractional order telegraph equation (TFOTE) by using Bernstein polynomials. By
implementation of Bernstein polynomials operational matrices of fractional differential on TFOTE, we reduce the original problem
to a linear system of algebraic equations. Also, we prove the convergence analysis. In order to show the efficiency of the proposed
method, we present two numerical examples.

1. Introduction

Telegraph equations are hyperbolic partial differential equa-
tions that are applicable in modeling the reaction diffusion
processes in various branches of engineering sciences and
biological sciences. Those equations frequently arise in the
study of wave propagation of electrical signal in a cable of
transmission line and wave phenomena [1–4].

Many authors have used various numerical and analytical
methods to solve the TFOTE. Chen and coworkers derived
the analytical solution of the nonhomogeneous TFOTE by
method of separation of variables [5]. Huang presented a new
analytical solution for three basic problems of time-fractional
telegraph equation.He solvedCauchy and signaling problems
by Laplace andFourier transforms and the boundary problem
by spatial Sine transform [6]. Dehghan and Shokri developed
a numerical method to solve the one-dimensional hyperbolic
telegraph equation using the collocation points and approxi-
mated the solution by using thin plate spline radial basic func-
tions [7]. Saadatmandi and Dehghan developed a numerical
solution based on Chebyshev tau method [4]. Yousefi in [8]
used Legendre multiwavelet Galerkin method for solving the
hyperbolic telegraph equation. In [9], Das and Gupta used
homotopy analysis method for solving fractional hyperbolic
partial differential equation. In [10],Mollahasani et al. applied
hybrid functions of Legendre polynomials and block pulse

functions to obtain the solution of telegraph equation of frac-
tional order.

In this paper, our study focuses on the time-fractional
telegraph equation of order 2𝛼:

𝜕2𝛼𝑢 (𝑥, 𝑡)𝜕𝑡2𝛼 + 𝑎𝜕𝛼𝑢 (𝑥, 𝑡)𝜕𝑡𝛼 + 𝑏𝑢 (𝑥, 𝑡)
= 𝑐𝜕2𝑢 (𝑥, 𝑡)𝜕𝑥2 + 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ [0, 1] × [0, 1]

(1)

with the initial and boundary conditions:

𝑢 (𝑥, 0) = 𝑓1 (𝑥) ,
𝑢𝑡 (𝑥, 0) = 𝑓2 (𝑥) ,
𝑢 (0, 𝑡) = 𝑔1 (𝑡) ,
𝑢 (1, 𝑡) = 𝑔2 (𝑡) .

(2)

The right-hand-side function 𝑓(𝑥, 𝑡) is given, 1/2 < 𝛼 ≤ 1,
and also 𝑎, 𝑏, and 𝑐 are arbitrary positive constants. If 𝛼 = 1,
we have one-dimensional hyperbolic telegraph equation.

The rest of this paper is organized as follows: First,
we present some preliminaries in fractional calculus. In
Section 3, we briefly review some general concepts concern-
ing Bernstein polynomials and the Bernstein polynomials
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operational matrix for fractional derivative. In Section 4, the
method is applied to solve linear TFOTE. Section 5 exhibits
an error estimation for the presented method. Section 6
illustrates two numerical examples to show the convergence
and accuracy of the proposed method.

2. Basic Definitions

In this section, we present some basic definitions and prop-
erties of the fractional calculus which are going to be used in
this paper.

Definition 1 (see [11]). The Riemann-Liouville fractional inte-
gral operator 𝐼𝛼 of order 𝛼 > 0 on the Lebesgue space 𝐿1[𝑎, 𝑏]
is given by

(𝐼𝛼0𝑓) (𝑡) = (𝐼𝛼𝑓) (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) 𝑑𝜏,

(𝐼0𝑓) (𝑡) = 𝑓 (𝑡) ,
(3)

where Γ(⋅) denotes Euler Gamma function.

Definition 2 (see [11]). The Caputo fractional derivative of
order 𝛼 is defined by

𝐷𝛼𝑓 (𝑡) = 𝐼𝑛−𝛼𝐷𝑛𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫
𝑡

0

𝑓(𝑛) (𝜏)(𝑡 − 𝜏)𝛼−𝑛+1 𝑑𝜏,
𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁,

(4)

where 𝛼 > 0 and 𝑛 is the smallest integer greater than 𝛼. For
the Caputo derivative, we have

𝐷𝛼𝑥𝛽 = {{{{{
Γ (𝛽 + 1)Γ (𝛽 + 1 − 𝛼)𝑥𝛽−𝛼 𝛽 ∈ 𝑁0, 𝛽 ≥ ⌈𝛼⌉ ,

0 𝛽 ∈ 𝑁0, 𝛽 < ⌈𝛼⌉ ,
𝐷𝛼𝑐 = 0 (𝑐 ∈ 𝑅) .

(5)

We use the ceiling function ⌈𝛼⌉ to denote the smallest integer
greater than or equal to 𝛼 and 𝑁0 = {0, 1, 2, . . .}. If 𝛼 ∈𝑁, the Caputo differential operator coincides with the usual
differential operator of an integer order.

For 𝑛−1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, we have the following properties:

𝐷𝛼𝐼𝛼𝑓 (𝑡) = 𝑓 (𝑡) ,
𝐼𝛼𝐷𝛼𝑓 (𝑡) = 𝑓 (𝑡) − 𝑛−1∑

𝑘=0

𝑓(𝑘) (0+) 𝑡𝑘𝑘! ,
𝑡 > 0.

(6)

3. Bernstein Polynomials and Their Properties

3.1. The Definition of Bernstein Polynomials Basis. The Bern-
stein polynomials (BPs) of degree 𝑛 on the interval [0, 1] are
defined by

𝐵𝑖,𝑛 (𝑥) = (𝑛𝑖) 𝑥𝑖 (1 − 𝑥)𝑛−𝑖 , 0 ≤ 𝑖 ≤ 𝑛. (7)

These polynomials have the following properties on [0, 1]
[12]:

(1) 𝐵𝑖,𝑛(𝑥) ≥ 0, 𝑖 = 0, 1, . . . , 𝑛, 𝑥 ∈ [0, 1],
(2) ∑𝑛𝑖=0 𝐵𝑖,𝑛(𝑥) = 1,
(3) 𝐵𝑖,𝑛(𝑥) = (1−𝑥)𝐵𝑖,𝑛−1(𝑥)+𝑥𝐵𝑖−1,𝑛−1(𝑥), 𝑖 = 0, 1, . . . , 𝑛,
(4) 𝐵𝑖,𝑛(𝑥) = ∑𝑛−𝑖𝑘=0(−1)𝑘 ( 𝑛𝑖 ) ( 𝑛−𝑖𝑘 ) 𝑥𝑖+𝑘, 𝑖 = 0, 1, . . . , 𝑛.

Theorem 3 (see [13]). Suppose that 𝐻 = 𝐿2[0, 1] is a Hilbert
space with the inner product and 𝑌 = Span{𝐵0,𝑛(𝑥), 𝐵1,𝑛(𝑥),. . . , 𝐵𝑛,𝑛(𝑥)} is a finite dimensional and closed subspace;
therefore, 𝑌 is a complete subspace of𝐻. So, if 𝑓 is an arbitrary
element in𝐻, it has a unique best approximation out of 𝑌 such
as 𝑦0; that is,󵄩󵄩󵄩󵄩𝑓 − 𝑦0󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑓 − 𝑦󵄩󵄩󵄩󵄩2 , ∃𝑦0 ∈ 𝑌 s.t. ∀𝑦 ∈ 𝑌, (8)

where ‖𝑓‖2 = √⟨𝑓, 𝑓⟩ and ⟨𝑓, 𝑔⟩ = ∫1
0
𝑓(𝑡)𝑔(𝑡)𝑑𝑡. So, there

exist unique coefficients 𝑐0, 𝑐1, . . . , 𝑐𝑛 such that
𝑓 (𝑥) ≃ 𝑦0 = 𝑛∑

𝑖=0

𝑐𝑖𝐵𝑖,𝑛 (𝑥) = 𝑐𝑇𝜑 (𝑥) , (9)

where 𝑐𝑇 = [𝑐0, 𝑐1, . . . , 𝑐𝑛] and
𝜑 (𝑥) = [𝐵0,𝑛 (𝑥) , 𝐵1,𝑛 (𝑥) , . . . , 𝐵𝑛,𝑛 (𝑥)]𝑇 . (10)

Lemma 4 (see [14]). If 𝜑(𝑥) = [𝐵0,𝑛(𝑥), 𝐵1,𝑛(𝑥), . . . , 𝐵𝑛,𝑛(𝑥)]𝑇
is a complete basis, then 𝜑(𝑥) = 𝐴𝑇𝑛(𝑥), where 𝐴 is an (𝑛 +1) × (𝑛 + 1) upper triangular matrix with

𝑎𝑖+1,𝑗+1 =
{{{{{{{
(−1)𝑗−𝑖(𝑛𝑖)(𝑛 − 𝑖𝑗 − 𝑖) 𝑖 ⩽ 𝑗,
0 𝑖 > 𝑗,

(11)

for 𝑖, 𝑗 = 0, 1, . . . , 𝑛 and 𝑇𝑛(𝑥) = [1, 𝑥, 𝑥2, . . . , 𝑥𝑛]𝑇.
3.2. Function Approximation. A function𝑓(𝑥, 𝑡) ∈ 𝐿2([0, 1]×[0, 1]) can be expressed in terms of the Bernstein polynomials
basis as

𝑓 (𝑥, 𝑡) = ∞∑
𝑖=0

∞∑
𝑗=0

𝑓𝑖𝑗𝐵𝑖,𝑛 (𝑥) 𝐵𝑗,𝑛 (𝑡)
≅ 𝑛∑
𝑖=0

𝑛∑
𝑗=0

𝑓𝑖𝑗𝐵𝑖,𝑛 (𝑥) 𝐵𝑗,𝑛 (𝑡) = 𝜑𝑇 (𝑥) 𝐹𝜑 (𝑡) ,
(12)

where

𝐹 =
[[[[[[
[

𝑓00 𝑓01 ⋅ ⋅ ⋅ 𝑓0𝑛𝑓10 𝑓11 ⋅ ⋅ ⋅ 𝑓1𝑛... ... d
...

𝑓𝑛0 𝑓𝑛1 ⋅ ⋅ ⋅ 𝑓𝑛𝑛

]]]]]]
]
, (13)
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with

𝑓𝑖𝑗 = (𝜑𝑖 (𝑥) , (𝑓 (𝑥, 𝑡) , 𝜑𝑗 (𝑡)))(𝜑𝑖 (𝑥) , 𝜑𝑖 (𝑥)) (𝜑𝑗 (𝑡) , 𝜑𝑗 (𝑡)) ,
𝑖, 𝑗 = 0, 1, . . . , 𝑛.

(14)

3.3. Operational Matrix for Fractional Derivative

Theorem 5. Let 𝜑(𝑥) be 𝑛 + 1 vector defined in (10); then,

𝐷𝛼𝜑 (𝑥) ≃ 𝐴𝑃𝐸𝑇𝜑 (𝑥) , (15)

where𝐴,𝑃, and𝐸 are (𝑛+1)×(𝑛+1)matrices that𝐴 is defined
in (11); 𝑃 is a diagonal matrix with

𝑃𝑖+1,𝑖+1 = Γ (𝑖 + 1)Γ (𝑖 + 1 − 𝛼) , 𝑖 = ⌈𝛼⌉ , . . . , 𝑛,
𝐸 = [𝐸0, 𝐸1, . . . , 𝐸𝑛] ,
𝐸𝑖 = 𝑄−1 [𝐸𝑖0, 𝐸𝑖1, . . . , 𝐸𝑖𝑛] ,
𝐸𝑖𝑗 = ∫1

0
𝑥𝑖−𝛼𝐵𝑗𝑛 (𝑥) 𝑑𝑥 = 𝑛!Γ (𝑖 + 𝑗 − 𝛼 + 1)𝑗!Γ (𝑖 + 𝑛 − 𝛼 + 2) ,

𝑖 = ⌈𝛼⌉ , . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑛.

(16)

𝐷𝛼 is called the Bernstein polynomials operational matrix of
fractional derivative [14].

4. Description of the Method

Clearly, 𝑢(𝑥, 𝑡) ∈ 𝐿2([0, 1] × [0, 1]) can be approximated by
using Bernstein polynomials as

𝑢 (𝑥, 𝑡) = 𝜑𝑇 (𝑥)𝑈𝜑 (𝑡) , (17)

where 𝜑(𝑥) and 𝜑(𝑡) are (𝑛+1) vectors defined in (10) and the
unknown 𝑈 is (𝑛 + 1) × (𝑛 + 1)matrix that can be shown as

𝑈 =
[[[[[[
[

𝑢00 𝑢01 ⋅ ⋅ ⋅ 𝑢0𝑛𝑢10 𝑢11 ⋅ ⋅ ⋅ 𝑢1𝑛... ... d
...

𝑢𝑛0 𝑢𝑛1 ⋅ ⋅ ⋅ 𝑢𝑛𝑛

]]]]]]
]
. (18)

Now, we can write

𝜕2𝛼𝑢 (𝑥, 𝑡)𝜕𝑡2𝛼 = 𝜕2𝛼 (𝜑𝑇 (𝑥)𝑈𝜑 (𝑡))
𝜕𝑡2𝛼

= 𝜑𝑇 (𝑥)𝑈𝜕2𝛼 (𝜑 (𝑡))𝜕𝑡2𝛼
= 𝜑𝑇 (𝑥)𝑈𝐷2𝛼𝜑 (𝑡) ,

(19)

𝑢𝑡 (𝑥, 𝑡) = 𝜕 (𝜑𝑇 (𝑥)𝑈𝜑 (𝑡))
𝜕𝑡 = 𝜑𝑇 (𝑥)𝑈𝐷𝜑 (𝑡) , (20)

𝜕𝛽𝑢 (𝑥, 𝑡)𝜕𝑥𝛽 = 𝜕𝛽 (𝜑𝑇 (𝑥)𝑈𝜑 (𝑡))
𝜕𝑥𝛽

= [𝜕𝛽𝜑 (𝑥)𝜕𝑥𝛽 ]𝑇𝑈𝜑 (𝑡)
= [𝐷𝛽𝜑 (𝑥)]𝑇𝑈𝜑 (𝑡)
= 𝜑𝑇 (𝑥) (𝐷𝛽)𝑇𝑈𝜑 (𝑡) .

(21)

Substituting (19) and (21) into (1), we have

𝜑𝑇 (𝑥)𝑈 [𝐷2𝛼 + 𝑎𝐷𝛼 + 𝑏𝐼] 𝜑 (𝑡)
= 𝑐𝜑𝑇 (𝑥) (𝐷2)𝑇𝑈𝜑 (𝑡) + 𝑓 (𝑥, 𝑡) . (22)

Now, we collocate (22) in (𝑛−1)×(𝑛−1)Newton-Cotes nodes
as

𝑥𝑖 = 2𝑖 − 12 (𝑛 + 1) ,
𝑦𝑗 = 2𝑗 − 12 (𝑛 + 1) ,

𝑖, 𝑗 = 2, 3, . . . , 𝑛.
(23)

So, we have (𝑛 − 1)2 equations as
𝑅 (𝑥𝑖, 𝑡𝑗) = 𝜑𝑇 (𝑥𝑖) 𝑈 [𝐷2𝛼 + 𝑎𝐷𝛼 + 𝑏𝐼] 𝜑 (𝑡𝑗)

− 𝑐𝜑𝑇 (𝑥𝑖) (𝐷2)𝑇𝑈𝜑 (𝑡𝑗) − 𝑓 (𝑥𝑖, 𝑡𝑗)
= 0.

(24)

Applying (17) and (20) in the initial and boundary conditions
(2), we get

𝑢 (𝑥, 0) = 𝜑𝑇 (𝑥)𝑈𝜑 (0) = 𝑓1 (𝑥) ,
𝑢𝑡 (𝑥, 0) = 𝜑𝑇 (𝑥)𝑈𝐷𝜑 (0) = 𝑓2 (𝑥) ,
𝑢 (0, 𝑡) = 𝜑𝑇 (0) 𝑈𝜑 (𝑡) = 𝑔1 (𝑡) ,
𝑢 (1, 𝑡) = 𝜑𝑇 (1) 𝑈𝜑 (𝑡) = 𝑔2 (𝑡) .

(25)

By collocating (25) in Newton-Cotes nodes 𝑥𝑖 and 𝑦𝑗 for 𝑖 =1, 2, . . . , 𝑛 + 1 and 𝑗 = 1, 2, . . . , 𝑛 − 1, we get 4𝑛 equations.
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These equations together with (24) give (𝑛 + 1)2 equations,
which can be solved for 𝑢𝑖𝑗, 𝑖, 𝑗 = 0, 1, . . . , 𝑛. So, the unknown
function 𝑢(𝑥, 𝑡) can be approximated.

5. Convergence Analysis

Theorem 6. Suppose that 𝑓 : [0, 1] × [0, 1] → 𝑅 is a
continuous function and all partial derivatives of 𝑓(𝑥, 𝑡) exist
and are continuous. Let 𝑌 = Span{𝐵𝑖𝑛(𝑥)𝐵𝑗𝑛(𝑡)}, 𝑖, 𝑗 =0, 1, . . . , 𝑛. If 𝑐𝑇𝜑(𝑥, 𝑡) = ∑𝑛𝑖=0∑𝑛𝑗=0 𝑓𝑖𝑗𝐵𝑖,𝑛(𝑥)𝐵𝑗,𝑛(𝑡) ∈ 𝑌 is the
best approximation for 𝑓 out of 𝑌 and also all (𝑛 + 1)th-order
partial derivatives of 𝑓 are bounded in magnitude by𝑀, then
the error bound is presented as follows:

󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑐𝑇𝜑󵄩󵄩󵄩󵄩󵄩2 ≤ 2𝑀(𝐾1 + 𝐾2)𝑛+2(𝑛 + 1)!√(2𝑛 + 3) (2𝑛 + 4) , (26)

where𝐾1 = max{1 − 𝑥0, 𝑥0} and 𝐾2 = max{1 − 𝑡0, 𝑡0}.
Proof. By applying the Taylor expansion in two variables for𝑓(𝑥, 𝑡), we have

𝑓 (𝑥, 𝑡) = 𝑓 (𝑥0, 𝑡0) + (𝑥 − 𝑥0) 𝜕𝑓𝜕𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥0 ,𝑡0)

+ (𝑡 − 𝑡0) 𝜕𝑓𝜕𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥0 ,𝑡0) +

12! [(𝑥 − 𝑥0)2 𝜕
2𝑓𝜕𝑥2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥0 ,𝑡0)

+ 2 (𝑥 − 𝑥0) (𝑡 − 𝑡0) 𝜕2𝑓𝜕𝑥𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥0 ,𝑡0)

+ (𝑡 − 𝑡0)2 𝜕2𝑓𝜕𝑡2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥0 ,𝑡0)] + ⋅ ⋅ ⋅ +

1𝑛! [(𝑥 − 𝑥0) 𝜕𝜕𝑥
+ (𝑡 − 𝑡0) 𝜕𝜕𝑡]

𝑛 𝑓 (𝑥0, 𝑡0) + 1(𝑛 + 1)! [(𝑥 − 𝑥0) 𝜕𝜕𝑥
+ (𝑡 − 𝑡0) 𝜕𝜕𝑡]

𝑛+1 𝑓 (𝑥0 + 𝜃 (𝑥 − 𝑥0) , 𝑡0
+ 𝜃 (𝑡 − 𝑡0)) = 𝑓1 (𝑥, 𝑦) + 1(𝑛 + 1)! [(𝑥 − 𝑥0) 𝜕𝜕𝑥
+ (𝑡 − 𝑡0) 𝜕𝜕𝑡]

𝑛+1 𝑓 (𝑥0 + 𝜃 (𝑥 − 𝑥0) , 𝑡0
+ 𝜃 (𝑡 − 𝑡0)) , 0 ≤ 𝜃 ≤ 1.

(27)

Hence, from Taylor expansion, we have

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡) − 𝑓1 (𝑥, 𝑡)󵄨󵄨󵄨󵄨
= 1(𝑛 + 1)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨[(𝑥 − 𝑥0)
𝜕𝜕𝑥 + (𝑡 − 𝑡0) 𝜕𝜕𝑡]

𝑛+1 𝑓 (𝜂, 𝜉)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(28)

Since 𝑐𝑇𝜑 is the best approximation for 𝑓 out of 𝑌, we
conclude that

󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑐𝑇𝜑󵄩󵄩󵄩󵄩󵄩22 ≤ 󵄩󵄩󵄩󵄩𝑓 − 𝑓1󵄩󵄩󵄩󵄩22 = ∬1
0

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡) − 𝑓1 (𝑥, 𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑥 𝑑𝑡 = ∬1
0

1(𝑛 + 1) !2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨[(𝑥 − 𝑥0)

𝜕𝜕𝑥 + (𝑡 − 𝑡0) 𝜕𝜕𝑡]
𝑛+1

⋅ 𝑓 (𝜂, 𝜉)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑥 𝑑𝑡 = ∬1

0

1(𝑛 + 1) !2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛+1∑
𝑟=0

(𝑛 + 1𝑟 ) (𝑥 − 𝑥0)𝑟 (𝑡 − 𝑡0)𝑛+1−𝑟 𝜕𝑛+1𝜕𝑥𝑟𝜕𝑡𝑛+1−𝑟𝑓 (𝜂, 𝜉)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑥 𝑑𝑡

≤ 𝑀2(𝑛 + 1) !2 ∬
1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛+1∑
𝑟=0

(𝑛 + 1𝑟 ) (𝑥 − 𝑥0)𝑟 (𝑡 − 𝑡0)𝑛+1−𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑥 𝑑𝑡 = 𝑀2(𝑛 + 1) !2 ∬

1

0

󵄨󵄨󵄨󵄨󵄨[(𝑥 − 𝑥0) + (𝑡 − 𝑡0)]𝑛+1󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 𝑑𝑡

≤ 4𝑀2 (𝐾1 + 𝐾2)2𝑛+4(𝑛 + 1) !2 (2𝑛 + 3) (2𝑛 + 4) .

(29)

Clearly, we obtain the following result:

󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑐𝑇𝜑󵄩󵄩󵄩󵄩󵄩2 ≤ 2𝑀(𝐾1 + 𝐾2)𝑛+2(𝑛 + 1)!√(2𝑛 + 3) (2𝑛 + 4) . (30)

Remark 7. Equation (26) shows that if 𝑛 → ∞, then ‖𝑓 −𝑐𝑇𝜑‖2 → 0.

6. Numerical Examples

To demonstrate the validity and applicability of the numerical
scheme, we apply the present method for the following
illustrative examples.

Example 1. Consider the time-fractional telegraph equation
of order 2𝛼:

𝜕2𝛼𝑢 (𝑥, 𝑡)𝜕𝑡2𝛼 + 20𝜕𝛼𝑢 (𝑥, 𝑡)𝜕𝑡𝛼 + 25𝑢 (𝑥, 𝑡)
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Table 1: The maximum absolute errors in Example 1.

𝑥 𝛼 = 1, 𝑛 = 24
ISF

𝛼 = 1 𝛼 = .975 𝛼 = .925
0.0 8.7 × 10−3 8.673 × 10−19 1.735 × 10−18 8.674 × 10−19
0.1 2.9 × 10−4 5.508 × 10−5 5.550 × 10−4 1.571 × 10−3
0.2 3.5 × 10−4 5.172 × 10−5 9.255 × 10−4 2.712 × 10−3
0.3 3.1 × 10−4 3.284 × 10−5 1.242 × 10−3 3.736 × 10−3
0.4 4.4 × 10−4 1.688 × 10−5 1.580 × 10−3 4.782 × 10−3
0.5 3.4 × 10−4 6.236 × 10−6 1.921 × 10−3 5.829 × 10−3
0.6 2.5 × 10−4 4.501 × 10−6 2.208 × 10−3 6.702 × 10−3
0.7 2.3 × 10−4 2.064 × 10−5 2.330 × 10−3 7.080 × 10−3
0.8 1.7 × 10−4 3.993 × 10−5 2.132 × 10−3 6.503 × 10−3
0.9 1.1 × 10−4 4.562 × 10−5 1.428 × 10−3 4.382 × 10−3
1.0 4.0 × 10−6 1.776 × 10−15 2.109 × 10−15 8.882 × 10−16

= 𝜕2𝑢 (𝑥, 𝑡)𝜕𝑥2 + 𝑓 (𝑥, 𝑡) ,
𝑢 (𝑥, 0) = sin (𝑥) ,
𝑢𝑡 (𝑥, 0) = 0,
𝑢 (0, 𝑡) = 0,
𝑢 (1, 𝑡) = cos (𝑡) sin (1) ,
𝑓 (𝑥, 𝑡) = −20 sin (𝑥) sin (𝑡) + 25 sin (𝑥) cos (𝑡) .

(31)

The exact solution of this example is 𝑢(𝑥, 𝑡) = sin(𝑥) cos(𝑡). In
Table 1, we compare the obtained numerical results with the
method of interpolating scaling functions operational matrix
[15] (ISF), for 𝛼 = 1. Also, in this table, we present the
maximum absolute errors in 𝑡 = 0.5 for 𝑛 = 4 and various
values of 𝛼.
Example 2. Consider the time-fractional telegraph equation
of order 2𝛼:

𝜕2𝛼𝑢 (𝑥, 𝑡)𝜕𝑡2𝛼 + 40𝜕𝛼𝑢 (𝑥, 𝑡)𝜕𝑡𝛼 + 100𝑢 (𝑥, 𝑡)
= 𝜕2𝑢 (𝑥, 𝑡)𝜕𝑥2 + 𝑓 (𝑥, 𝑡) ,

𝑢 (𝑥, 0) = sinh (𝑥) ,
𝑢𝑡 (𝑥, 0) = −2 sinh (𝑥) ,
𝑢 (0, 𝑡) = 0,
𝑢 (1, 𝑡) = 𝑒−2𝑡 sinh (1) ,
𝑓 (𝑥, 𝑡) = 23𝑒−2𝑡 sinh (𝑥) .

(32)

Table 2 shows the absolute errors using the proposed
method in the previous section for 𝛼 = 0.975 and different
values of 𝑛. The exact solution of this equation is 𝑢(𝑥, 𝑡) =𝑒−2𝑡 sinh(𝑥).

Table 2: The maximum absolute errors for 𝛼 = 0.975.
𝑥 = 𝑡 𝑛 = 3 𝑛 = 4 𝑛 = 5
0.0 4.426 × 10−4 8.630 × 10−5 2.150 × 10−6
0.1 7.578 × 10−5 6.734 × 10−5 2.965 × 10−5
0.2 2.117 × 10−5 1.172 × 10−4 2.082 × 10−4
0.3 5.044 × 10−4 1.851 × 10−5 3.804 × 10−4
0.4 3.169 × 10−4 3.180 × 10−4 2.702 × 10−4
0.5 1.368 × 10−3 1.011 × 10−3 3.151 × 10−4
0.6 2.990 × 10−3 1.997 × 10−3 1.499 × 10−3
0.7 2.689 × 10−3 3.270 × 10−3 3.168 × 10−3
0.8 3.304 × 10−2 6.917 × 10−3 4.472 × 10−3
0.9 1.212 × 10−1 2.302 × 10−2 2.676 × 10−3

7. Conclusion

This paper proposed a numerical approach for solving
TFOTE by using the operational matrices of Bernstein poly-
nomials. The operational matrix of fractional derivative, 𝐷𝛼,
as well as collocation method was used to transform the
TFOTE to a linear system of algebraic equations.The numer-
ical results show that the proposed method in this paper can
be a suitable method for solving these equations. To obtain
the numerical results, we applied Mathematica 9 software.
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