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Abstract. Several techniques are suggested in order to generate estimated solu-

tions of fuzzy nonlinear programming problems. This work is an attempt in or-

der to suggest a novel technique to obtain the fuzzy optimal solution related to 

the fuzzy nonlinear problems. The major concept is on the basis of the employ-

ing nonlinear system with equality constraints in order to generate nonnegative 

fuzzy number matrixes 𝑌̃, 𝑌̃2, … , 𝑌̃𝑛 that satisfies 𝐷̃𝑌̃ + 𝐺̃𝑌̃2 +⋯+ 𝑃̃𝑌̃𝑛 =
𝑄̃  in which  𝐷̃, 𝐺̃, … , 𝑃̃ and 𝑄̃ are taken to be fuzzy number matrices. An ex-

ample is demonstrated in order to show the capability of the proposed model. 

The outcomes show that the suggested technique is simple to use for resolving 

fully fuzzy nonlinear system (FFNS). 

Keywords: Fuzzy solution, Fuzzy numbers, Fully fuzzy nonlinear system, Ful-

ly fuzzy matrix equations. 

1 Introduction 

An area of applied mathematics which contains many applications in different 

fields of science is resolving fuzzy nonlinear systems [1-8]. In [9] a numerical method 

is proposed for solving fuzzy systems. Theoretical aspects related to the fuzzy linear 

system are investigated in [10]. In [11] the Jacobi as well as Gauss Seidel techniques 

are suggested in order to find the solution of fuzzy linear system. In [12] the Conju-

gate gradient approach is suggested in order to resolve fuzzy symmetric positive defi-

nite system of linear equation. In [13] an iterative algorithm in order to resolve dual 

linear systems is proposed. In [14] LU decomposition technique is applied in order to 

solve fuzzy system of linear equation. In [15] a certain decomposition technique is 

applied in order to resolve fully fuzzy linear system of equations. 

Generally, there is no approach on the basis of matrices which yields fuzzy solu-

tions for FFNS. In this paper, a novel method is proposed in order to resolve the fully 

fuzzy nonlinear matrix equations (FFNME), 𝐷̃𝑌̃ + 𝐺̃𝑌̃2 +⋯+ 𝑃̃𝑌̃𝑛 = 𝑄̃,  in which 

𝐷̃, 𝐺̃, … , 𝑃̃ are n×n arbitrary triangular fuzzy number matrices, 𝑄̃  is a n×1 arbitrary 
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triangular fuzzy number matrix, also the unknown 𝑌̃, 𝑌̃2, … , 𝑌̃𝑛 are matrices having 

n positive fuzzy numbers. The fuzzy matrices  𝑌̃2, … , 𝑌̃𝑛 are defined with following 

elements: 

If  𝑌̃ = [

𝑦̃1,1
𝑦̃2,1
⋮
𝑦̃𝑛,1

], then 𝑌̃2 =

[
 
 
 
 
𝑦̃1,1
2

𝑦̃2,1
2

⋮
𝑦̃𝑛,1
2 ]
 
 
 
 

, … , 𝑌̃𝑛 =

[
 
 
 
𝑦̃1,1
𝑛 

𝑦̃2,1
𝑛

⋮
𝑦̃𝑛,1
𝑛 ]
 
 
 

.   

A nonlinear system is applied in order to obtain nonnegative fuzzy number matrixs 

𝑌̃, 𝑌̃2, … , 𝑌̃𝑛 that satisfies 𝐷̃𝑌̃ + 𝐺̃𝑌̃2 +⋯+ 𝑃̃𝑌̃𝑛 = 𝑄̃. 

This paper is organized as follows: Some basic definitions are given in Section 2. 

In Section 3, a novel technique in order to resolve FFNS is suggested with numerical 

example. Conclusion is given in Section 4. 

2 Basic definitions and notations 

In this section the essential notations utilized in fuzzy operations are given.  

Definition 1. A fuzzy number is a fuzzy set  𝑧 ̃: ℝ1 → [0,1] such that 

i. 𝑧̃ is upper semi-continuous. 

ii. 𝑧̃(x) = 0 outside some interval [k, l]. 

iii. There exist real numbers l and m,  k ≤ l≤  m≤  n,  where 

1. 𝑧̃(x) is monotonically increasing on [k, l], 

2. 𝑧̃(x) is monotonically decreasing on [m, n], 

3. 𝑧̃(x) = 1, l≤ x≤ m. 

The set of all fuzzy numbers is displayed by E1 [16,17]. 

Definition 2. 𝐶̃ = (𝑐̃𝑖𝑗 ) is named a fuzzy number matrix, if each element of 𝐶̃ be a 

fuzzy number. 𝐶̃ is named a positive (negative) fuzzy matrix, also is displayed by 𝐶̃> 

0 (𝐶̃ < 0) if each element of 𝐶̃ be positive (negative). 𝐶̃ is named non-positive (non-

negative), also displayed by 𝐶̃ ≤ 0 (𝐶̃ ≥ 0) if each element of 𝐶̃ is non-positive (non-

negative). 

Definition 3. Suppose  𝑝̃ = (𝑝𝑚, 𝑝𝑙 , 𝑝𝑢)    as well as   𝑞̃ = (𝑞𝑚, 𝑞𝑙 , 𝑞𝑢) be two 

triangular fuzzy numbers. Hence: 

1. 𝑝̃ ⊕ 𝑞̃ = (𝑝𝑚 + 𝑞𝑚, 𝑝𝑙 + 𝑞𝑙 , 𝑝𝑢 + 𝑞𝑢), 
2. −𝑝̃ = (−𝑝𝑢, −𝑝𝑙 , −𝑝𝑚), 
3. 𝑝̃ ⊝ 𝑞̃ = (𝑝𝑚 − 𝑞𝑢, 𝑝𝑙 − 𝑞𝑙 , 𝑝𝑢 − 𝑞𝑚). 

The fuzzy multiplication is displayed by  ∗̂  [18]. It is performed with the below 

mentioned equation: 

𝑝̃ ∗̂ 𝑞̃ = (𝑠𝑚,  𝑠𝑙 ,  𝑠𝑢), 
where 

𝑠𝑙 = 𝑝𝑙 . 𝑞𝑙, 
𝑠𝑚 = min (𝑝𝑚. 𝑞𝑚,  𝑝𝑚. 𝑞𝑢, 𝑝𝑢. 𝑞𝑚, 𝑝𝑢. 𝑞𝑢), 
𝑠𝑢 = max (𝑝𝑚. 𝑞𝑚, 𝑝𝑚. 𝑞𝑢, 𝑝𝑢. 𝑞𝑚, 𝑝𝑢. 𝑞𝑢). 
In a case that  𝑝̃ be a triangular fuzzy number as well as 𝑞̃ be a non-negative one, 

the following is concluded: 
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𝑝̃ ∗̂ 𝑞̃ = {

(𝑝𝑚. 𝑞𝑚 ,  𝑝𝑙 . 𝑞𝑙 ,  𝑝𝑢. 𝑞𝑢),              𝑝𝑚 ≥ 0,                
(𝑝𝑚. 𝑞𝑢 ,  𝑝𝑙 . 𝑞𝑙 ,  𝑝𝑢. 𝑞𝑢),               𝑝𝑚 < 0,  𝑝𝑢 ≥ 0,
(𝑝𝑚. 𝑞𝑚 ,  𝑝𝑙 . 𝑞𝑙 ,  𝑝𝑢. 𝑞𝑚),             𝑝𝑚 < 0,  𝑝𝑢 < 0.

 

3 Fully fuzzy nonlinear matrix equation 

Consider the below mentioned FFNME: 

[
 
 
 
 𝑑̃11
𝑑̃21
⋮
𝑑̃𝑛1

𝑑̃12
𝑑̃22
⋮
𝑑̃𝑛2

…
⋯
⋮
…

𝑑̃1𝑛
𝑑̃2𝑛
 ⋮
𝑑̃𝑛𝑛]

 
 
 
 

  

[
 
 
 
 
𝑦̃11
𝑦̃21
⋮
𝑦̃𝑛1]

 
 
 
 

+

[
 
 
 
 𝑔̃11
𝑔̃21
⋮
𝑔̃𝑛1

𝑔̃12
𝑔̃22
⋮
𝑔̃𝑛2

…
…
⋮
…

𝑔̃1𝑛
𝑔̃2𝑛
 ⋮
𝑔̃𝑛𝑛]

 
 
 
 

  

[
 
 
 
𝑦̃11
2

𝑦̃21
2

⋮
𝑦̃𝑛1
2 ]
 
 
 
+ ⋯+

[
 
 
 
 𝑝̃11
𝑝̃21
⋮
𝑝̃𝑛1

𝑝̃12
𝑝̃22
⋮
𝑝̃𝑛2

…
⋯
⋮
…

𝑝̃1𝑛
𝑝̃2𝑛
 ⋮
𝑝̃𝑛𝑛]

 
 
 
 

  [

𝑦̃11
𝑛

𝑦̃21
𝑛

⋮
𝑦̃𝑛1
𝑛

] =

[
 
 
 
 
𝑞̃11
𝑞̃21
⋮
𝑞̃𝑛1]

 
 
 
 

  

In which 𝑑̃𝑖𝑗 ,  𝑔̃𝑖𝑗  as well as 𝑝̃𝑖𝑗  (𝑓𝑜𝑟 1 ≤ 𝑖, 𝑗 ≤ 𝑛),  are arbitrary triangular fuzzy 

numbers, the elements 𝑞̃𝑖1  as well as the unknown elements 𝑦̃𝑖1  are nonnegative fuzzy 

numbers. Utilizing matrix notation, the following is extracted 

𝐷̃ ∗̂ 𝑌̃ + 𝐺̃ ∗̂ 𝑌̃2 +⋯+ 𝑃̃ ∗̂ 𝑌̃𝑛 = 𝑄̃.                    (1) 

The fuzzy number matrices 𝑌̃ = (𝑦̃1 , 𝑦̃2 , … , 𝑦̃𝑛 )
𝑇,  𝑌̃ 

2 = (𝑦̃1
2, 𝑦̃2

2, … , 𝑦̃𝑛
2)𝑇, …, 

 𝑌̃𝑛 = (𝑦̃1
𝑛, 𝑦̃2

𝑛, … , 𝑦̃𝑛
𝑛)𝑇demonstrated by 𝑦̃𝑖 = (𝑢̃𝑖1, 𝑦̃𝑖1 , 𝑣̃𝑖1),  𝑦̃𝑖

2 = (𝑢̃𝑖1
2 , 𝑦̃𝑖1

2 ,

𝑣̃𝑖1
2 ), …,    𝑦̃𝑖

𝑛 = (𝑢̃𝑖1
𝑛 , 𝑦̃𝑖1

𝑛 , 𝑣̃𝑖1
𝑛 ), (for 1 ≤ i ≤ n), are the solutions of the fuzzy matrix 

system Eq. (1) if 

 𝑑̃𝑖 ∗̂ 𝑌̃ + 𝑔̃𝑖 ∗̂ 𝑌̃
2 +⋯+ 𝑝̃𝑖 ∗̂ 𝑌̃

𝑛 = 𝑞̃𝑖 , 1 ≤ 𝑖 ≤ 𝑛,           (2) 

where 

𝑞̃𝑖 = ( 𝑎̃𝑖1, 𝑞̃𝑖1 , 𝑐̃𝑖1),  

𝑑̃𝑖 = ((𝑏̃𝑖1 , 𝑑̃𝑖1 , 𝑒̃𝑖1), (𝑏̃𝑖2 , 𝑑̃𝑖2 , 𝑒̃𝑖2),… , (𝑏̃𝑖𝑛, 𝑑̃𝑖𝑛, 𝑒̃𝑖𝑛)) , 

𝑔̃𝑖 = ((𝑓𝑖1 , 𝑔̃𝑖1 , ℎ̃𝑖1), (𝑓𝑖2 , 𝑔̃𝑖2 , ℎ̃𝑖2),… , (𝑓𝑖𝑛 , 𝑔̃𝑖𝑛, ℎ̃𝑖𝑛)), 

𝑝̃𝑖 = ((𝑟̃𝑖1 , 𝑝̃𝑖1 , 𝑠̃𝑖1), (𝑟̃𝑖2 , 𝑝̃𝑖2 , 𝑠̃𝑖2),… , (𝑟̃𝑖𝑛 , 𝑝̃𝑖𝑛, 𝑠̃𝑖𝑛)). 

Definition 4. In the nonnegative FFNME Eq. (1), with new notations 𝐷̃ = (B, D, 

E), 𝐺̃ = (𝐹, 𝐺, 𝐻),  …,  𝑃̃ = (R, P, S) in which B, D, E, F, G, H, …., R, P, S are crisp 

matrices, we say that 𝑌̃, 𝑌̃2, …,  𝑌̃𝑛are the solutions if: 

{
𝐵𝑈 + 𝐹𝑈2 +⋯+ 𝑅𝑈𝑛 = 𝐴,

𝐷𝑌 + 𝐺𝑌2 +⋯+ 𝑃𝑌𝑛 = 𝑄,

𝐸𝑉 + 𝐻𝑉2 +⋯+ 𝑆𝑉𝑛 = 𝐶.

                                                                                             (3) 

Moreover, if 𝑈 ≥ 0, 𝑌 − 𝑈 ≥ 0, 𝑉 − 𝑌 ≥ 0, 𝑌2 − 𝑈 2 ≥ 0, 𝑉2 − 𝑌2 ≥ 0,… ,

𝑌𝑛 − 𝑈 𝑛 ≥ 0, 𝑉𝑛 − 𝑌𝑛 ≥ 0, so it can be denoted that 𝑌̃ , 𝑌̃2, …, 𝑌̃𝑛are consistent 

solutions of the nonnegative FFNME. 
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3.1 The proposed technique 

Here, a novel technique in order to obtain fuzzy solutions of an FFNME is sug-

gested. Take into consideration the FFNME Eq. (2) in which all the parameters 𝑑̃𝑖𝑗
 , 

𝑔̃𝑖𝑗 , … , 𝑝̃𝑖𝑗 , 𝑦̃𝑖1  as well as 𝑞̃𝑖1  are demonstrated as (bij , dij , eij), (fij , gij , hij), …, (rij , pij 

, sij ), (ui1, yi1 , vi1) and (ai1 , qi1 , ci1) respectively. Hence the FFNME is written as 

below 

(B, D, E)(U, Y, V) + (F, G, H) (U2, Y2, V2)+…+(R, P, S)(Un, Yn, Vn) = (A, Q, C),  (3) 

Assuming(𝑏𝑖𝑘 , 𝑑𝑖𝑘, 𝑒𝑖𝑘  ) ∗̂ (𝑢𝑘1, 𝑦𝑘1, 𝑣𝑘1) + (𝑓𝑖𝑘 , 𝑔𝑖𝑘 , ℎ𝑖𝑘 ) ∗̂ (𝑢𝑘1
2 , 𝑦𝑘1

2 , 𝑣𝑘1
2 ) + ⋯+

(𝑟𝑖𝑘 , 𝑝𝑖𝑘 , 𝑠𝑖𝑘  ) ∗̂ (𝑢𝑘1
𝑛 , 𝑦𝑘1

𝑛 , 𝑣𝑘1
𝑛 ) = (𝑘𝑘1

(𝑗)
, 𝑜𝑘1
(𝑗)
, 𝑥𝑘1
(𝑗)
) , 1 ≤ 𝑖 , 𝑗, 𝑘 ≤ 𝑛 , in which each 

  (𝑢𝑘1, 𝑦𝑘1, 𝑣𝑘1) is a nonnegative triangular fuzzy number. The FFNME (2) can be 

displayed as below: 

∑ (𝑘𝑘1
(𝑗)
, 𝑜𝑘1

(𝑗)
, 𝑥𝑘1

(𝑗)
) =𝑛

𝑘=1 (𝑎𝑖1, 𝑞𝑖1, 𝑐𝑖1),    1 ≤ 𝑖 ≤ 𝑛.    (4) 

Utilizing arithmetic operations, described in section 2, the following nonlinear pro-

gramming is obtained in which, the artificial variables 𝑟𝑖,  i = 1, 2, …, n2  is added. 

Minimize r1 + r2 + …. + rn
2, 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{
 
 
 
 
 
 

 
 
 
 
 
 ∑ 𝑤𝑘1

(1) + 𝑟1 = 𝑑11,      
𝑛

𝑘=1

∑ 𝑤𝑘1
(2) + 𝑟2 = 𝑑21,      

𝑛

𝑘=1

⋮

∑ 𝑤𝑘1
(𝑛) + 𝑟𝑛 = 𝑑𝑛1,     

𝑛

𝑘=1

∑ 𝑞𝑘1
(1) + 𝑟𝑛+1 = 𝑏11,   

𝑛

𝑘=1

  

⋮

∑ 𝑢𝑘1
(𝑛) + 𝑟3𝑛 = 𝑓𝑛1.       

𝑛

𝑘=1

 

4   Example 

In order to explain the suggested approach, the below mentioned example is given. 

Example 4.1. Take into consideration the below mentioned FFNME: 

[
(2, 3, 5) (2, 4, 5)
(1, 2, 3) (3, 4, 6)

] [
𝑥̃11
𝑥̃21

] + [
(1, 2, 3) (3, 5, 6)
(3, 4, 5) (1, 3, 4)

] [
𝑥̃11
2

𝑥̃21
2 ] = [

(19, 140, 467)
(14, 136, 436)

], 

Assuming 𝑥̃11 = (𝑦11,  𝑥11,  𝑧11),  𝑥̃21 = (𝑦21, 𝑥21,  𝑧21),  𝑥̃11
2 =

(𝑦11
2 ,  𝑥11

2 ,  𝑧11
2 )  𝑎𝑛𝑑 𝑥̃21

2 = (𝑦21
2 ,  𝑥21

2 ,  𝑧21
2 ).  The FFNME is displayed as follows: 

{
 
 

 
 (2, 3, 5) ∗̂ (𝑦11,  𝑥11,  𝑧11) + (2, 4, 5) ∗̂ (𝑦21,  𝑥21,  𝑧21) + (1, 2, 3)(𝑦11

2 ,  𝑥11
2 ,  𝑧11

2 ) +

(3, 5, 6)(𝑦21
2 ,  𝑥21

2 ,  𝑧21
2 ) = (19, 140, 467),

(1, 2, 3) ∗̂ (𝑦11,  𝑥11,  𝑧11) + (3, 4, 6) ∗̂ (𝑦21,  𝑥21,  𝑧21) + (3, 4, 5)(𝑦11
2 ,  𝑥11

2 ,  𝑧11
2 ) +

(1, 3, 4)(𝑦21
2 ,  𝑥21

2 ,  𝑧21
2 ) = (14, 136, 436).

 

Wherein 
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{
 
 

 
 (2𝑦11 + 2𝑦21 + 𝑦11

2 + 3𝑦21
2 , 3𝑥11 + 4𝑥21 + 2𝑥11

2 + 5𝑥21
2 , 5𝑧11 + 5𝑧21 + 3𝑧11

2 + 6𝑧21
2 )

= (19,140,467),

(𝑦11 + 3𝑦21 + 3𝑦11
2 + 𝑦21

2 , 2𝑥11 + 4𝑥21 + 4𝑥11
2 + 3𝑥21

2 , 3𝑧11 + 6𝑧21 + 5𝑧11
2 + 4𝑧21

2 )

= (14,136,436).

 

Applying the suggested approach, the FFNME is transformed into the below men-

tioned crisp system: 

{
  
 

  
 
2𝑦11 + 2𝑦21 + 𝑦11

2 + 3𝑦21
2 = 19,

3𝑥11 + 4𝑥21 + 2𝑥11
2 + 5𝑥21

2 = 140,

5𝑧11 + 5𝑧21 + 3𝑧11
2 + 6𝑧21

2 = 467,

 𝑦11 + 3𝑦21 + 3𝑦11
2 + 𝑦21

2 = 14,

 2𝑥11 + 4𝑥21 + 4𝑥11
2 + 3𝑥21

2 = 136,

3𝑧11 + 6𝑧21 + 5𝑧11
2 + 4𝑧21

2 = 436.

 

Minimize 𝑟1 + 𝑟2 +⋯+ 𝑟6  

{
  
 

  
 
2𝑦11 + 2𝑦21 + 𝑦11

2 + 3𝑦21
2 + 𝑟1 = 19,     

3𝑥11 + 4𝑥21 + 2𝑥11
2 + 5𝑥21

2 + 𝑟2 = 140,

5𝑧11 + 5𝑧21 + 3𝑧11
2 + 6𝑧21

2 + 𝑟3 = 467,

 𝑦11 + 3𝑦21 + 3𝑦11
2 + 𝑦21

2 + 𝑟4 = 14,          

 2𝑥11 + 4𝑥21 + 4𝑥11
2 + 3𝑥21

2 + 𝑟5 = 136,   

3𝑧11 + 6𝑧21 + 5𝑧11
2 + 4𝑧21

2 + 𝑟6 = 436.

 

where  𝑟1 + 𝑟2 +⋯+ 𝑟6 ≥ 0. The optimal solution is 𝑦11 = 1, 𝑦21 = 2, 𝑦11
2 = 1,

𝑦21
2 = 4, 𝑥11 = 4, 𝑥21 = 4, 𝑥11

2 = 16, 𝑥21
2 = 16, 𝑧11 = 6, 𝑧21 = 7, 𝑧11

2 =

36,   𝑧21
2 = 49.  Hence the fuzzy solution is given by 𝑥̃11 = (1, 4, 6), 𝑥̃21 = (2, 4, 7),

𝑥̃11
2 = (1, 16, 36) 𝑎𝑛𝑑 𝑥̃21

2 = (4, 16, 49). 

5 Concluding remarks 

The fuzzy nonlinear systems are extremely significant in numerical analysis. In this 

paper, a novel technique in order to extract the nonnegative fuzzy optimal solutions of 

FFNME,  𝐷̃𝑌̃ + 𝐺̃𝑌̃2 +⋯+ 𝑃̃𝑌̃𝑛 = 𝑄̃ is suggested, in which 𝐷̃, 𝐺 ̃, … , 𝑃̃ are n×n 

arbitrary triangular fuzzy number matrices, 𝑄̃ is a n×1 arbitrary triangular fuzzy num-

ber matrix, also the unknown 𝑌̃, 𝑌̃2, … , 𝑌̃𝑛 are matrices having n positive fuzzy 

numbers. A nonlinear system with equality constraints to FFNME is utilized in order 

to resolve FFNME. The suggested technique is validated with a numerical example.  
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