6,626 research outputs found

    Disagreement between correlations of quantum mechanics and stochastic electrodynamics in the damped parametric oscillator

    Get PDF
    Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.Comment: accepted by PR

    Differential equations for multi-loop integrals and two-dimensional kinematics

    Full text link
    In this paper we consider multi-loop integrals appearing in MHV scattering amplitudes of planar N=4 SYM. Through particular differential operators which reduce the loop order by one, we present explicit equations for the two-loop eight-point finite diagrams which relate them to massive hexagons. After the reduction to two-dimensional kinematics, we solve them using symbol technology. The terms invisible to the symbols are found through boundary conditions coming from double soft limits. These equations are valid at all-loop order for double pentaladders and allow to solve iteratively loop integrals given lower-loop information. Comments are made about multi-leg and multi-loop integrals which can appear in this special kinematics. The main motivation of this investigation is to get a deeper understanding of these tools in this configuration, as well as for their application in general four-dimensional kinematics and to less supersymmetric theories.Comment: 25 pages, 7 figure

    Spherical Formulation for Diagramatic Evaluations on a Manifold with Boundary

    Full text link
    The mathematical formalism necessary for the diagramatic evaluation of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The evaluation of quantum corrections to the effective action past one-loop necessitates diagramatic techniques. Diagramatic evaluations and higher loop-order renormalisation can be best accomplished on a Riemannian manifold of constant curvature accommodating a boundary of constant extrinsic curvature. In such a context the stated evaluations can be accomplished through a consistent interpretation of the Feynman rules within the spherical formulation of the theory for which the method of images allows. To this effect, the mathematical consequences of such an interpretation are analyzed and the spherical formulation of the Feynman rules on the bounded manifold is, as a result, developed.Comment: 12 pages, references added. To appear in Classical and Quantum Gravit

    Yangian symmetry of light-like Wilson loops

    Get PDF
    We show that a certain class of light-like Wilson loops exhibits a Yangian symmetry at one loop, or equivalently, in an Abelian theory. The Wilson loops we discuss are equivalent to one-loop MHV amplitudes in N=4 super Yang-Mills theory in a certain kinematical regime. The fact that we find a Yangian symmetry constraining their functional form can be thought of as the effect of the original conformal symmetry associated to the scattering amplitudes in the N=4 theory.Comment: 15 pages, 5 figure

    Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang-Mills theory

    Get PDF
    We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behaviour, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parameters uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral \Omega^{(2)}, also plays a key role in a new representation of the remainder function R_6^{(2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) \times (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) \times (parity even) part. The second non-polylogarithmic function, the loop integral \tilde{\Omega}^{(2)}, characterizes this sector. Both \Omega^{(2)} and tilde{\Omega}^{(2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.Comment: 51 pages, 4 figures, one auxiliary file with symbols; v2 minor typo correction

    Real-time model-based slam using line segments

    Get PDF
    Abstract. Existing monocular vision-based SLAM systems favour interest point features as landmarks, but these are easily occluded and can only be reliably matched over a narrow range of viewpoints. Line segments offer an interesting alternative, as line matching is more stable with respect to viewpoint changes and lines are robust to partial occlusion. In this paper we present a model-based SLAM system that uses 3D line segments as landmarks. Unscented Kalman filters are used to initialise new line segments and generate a 3D wireframe model of the scene that can be tracked with a robust model-based tracking algorithm. Uncertainties in the camera position are fed into the initialisation of new model edges. Results show the system operating in real-time with resilience to partial occlusion. The maps of line segments generated during the SLAM process are physically meaningful and their structure is measured against the true 3D structure of the scene.

    The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM

    Get PDF
    We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral Φ~6\tilde\Phi_6 with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar mathcalN=4\\mathcal{N}=4 super-Yang-Mills theory, Ω(1)\Omega^{(1)} and Ω(2)\Omega^{(2)}. The derivative of Ω(2)\Omega^{(2)} with respect to one of the conformal invariants yields Φ~6\tilde\Phi_6, while another first-order differential operator applied to Φ~6\tilde\Phi_6 yields Ω(1)\Omega^{(1)}. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in mathcalN=4\\mathcal{N}=4 super-Yang-Mills.Comment: 18 pages, 2 figure

    Bayesian total evidence dating reveals the recent crown radiation of penguins

    Get PDF
    The total-evidence approach to divergence-time dating uses molecular and morphological data from extant and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a single coherent framework. Current model-based implementations of this approach lack an appropriate model for the tree describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We address this shortcoming by providing a total-evidence method implemented in a Bayesian framework. This approach uses a mechanistic tree prior to describe the underlying diversification process that generated the tree of extant and fossil taxa. Previous attempts to apply the total-evidence approach have used tree priors that do not account for the possibility that fossil samples may be direct ancestors of other samples. The fossilized birth-death (FBD) process explicitly models the diversification, fossilization, and sampling processes and naturally allows for sampled ancestors. This model was recently applied to estimate divergence times based on molecular data and fossil occurrence dates. We incorporate the FBD model and a model of morphological trait evolution into a Bayesian total-evidence approach to dating species phylogenies. We apply this method to extant and fossil penguins and show that the modern penguins radiated much more recently than has been previously estimated, with the basal divergence in the crown clade occurring at ~12.7 Ma and most splits leading to extant species occurring in the last 2 million years. Our results demonstrate that including stem-fossil diversity can greatly improve the estimates of the divergence times of crown taxa. The method is available in BEAST2 (v. 2.4) www.beast2.org with packages SA (v. at least 1.1.4) and morph-models (v. at least 1.0.4).Comment: 50 pages, 6 figure
    • …
    corecore