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1 Introduction

Scattering amplitudes in gauge theories exhibit many surprising features hinting at an

extraordinary simplicity that is not apparent in direct Feynman graph calculations. This

is demonstrated at tree-level by the remarkable simplicity of the Parke-Taylor formula

for maximally-helicity-violating amplitudes [1]. Such simplicity continues to all tree-level

amplitudes if one employs the on-shell recursive BCFW relations [2, 3] to construct them

from their known singularity structure.

The level of simplification is even greater when considering the maximally supersym-

metric theory, N = 4 super Yang-Mills. In this case the recursive tree-level relations

simplify [4, 5] and admit a closed-form solution [6]. Furthermore the N = 4 theory ex-

hibits a very large symmetry algebra. On the colour-ordered tree-level amplitudes the

original superconformal symmetry of the Lagrangian combines with another copy of su-

perconformal symmetry, called dual superconformal symmetry [7] to form the Yangian of

the superconformal algebra [8]. The individual BCFW terms are each invariants under

the full Yangian symmetry. They can be thought of as particular contour choices in the

Grassmannian integral of [9] (or equivalently its T-dual version [10, 11]) which collects

together all Yangian invariant objects into a single simple formula [12–14].

At loop level it has recently been realised that the above statements all hold at the

level of the (unregulated) planar integrand. The integrand at a given loop order can be

constructed from its singularities via a generalisation of the BCFW recursion relations

and, remarkably, each term is individually invariant under the full Yangian symmetry up

to a total derivative [15]. At the level of the actual amplitudes the situation with the full

symmetry is less clear, one issue being that the amplitudes are infrared divergent and thus

require regularisation. A particularly useful regulator is the one obtained by introducing

vacuum expectation values for the scalar fields [16–18]. This regulator preserves the dual

conformal symmetry so that the resulting integrals are invariant. For work relating this

picture to higher dimensions see [19–21].

It has been known for a while that amplitudes in N = 4 super Yang-Mills are connected

with light-like Wilson loops both at strong coupling (via the AdS/CFT correspondence) [22]
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and in perturbation theory [23, 24]. While at strong coupling the dependence on the helicity

configuration of the amplitude appears as a subleading effect, in perturbation theory the

correspondence with Wilson loops was originally limited only to the MHV amplitudes (with

direct evidence of the correspondence coming up to two loops and six points [25, 26]).

However the amplitude/Wilson loop relation has recently been generalised to cover all

helicity configurations [27, 28].

From the Wilson loop perspective the dual conformal symmetry of the scattering am-

plitudes is the natural conformal symmetry of the light-like Wilson loops. Its effects are

taken into account via an anomalous Ward identity [29, 30] which fixes the finite part of the

Wilson loops (or equivalently MHV amplitudes) up to a function of conformally invariant

cross-ratios. The Ward identity therefore expresses the consequence of the dual conformal

symmetry of the scattering amplitudes. What is not clear is how the original conformal

symmetry of the scattering amplitudes is realised beyond tree-level. The question of what

happens to the original conformal symmetry at one loop has been addressed before in sev-

eral papers. In particular the non-invariance of the one-loop amplitudes itself is not just

due to the obvious breaking due to the presence of infrared divergences. A further effect

can be traced to the holomorphic anomaly which gives a contact term variation even at

tree level due to collinear singularities [31–34]. Here, by appealing to Yangian structure of

the underlying algebra we will be able to give a simple realisation of the symmetry on the

one-loop amplitudes.

There are two ways of looking at the full Yangian symmetry. The first is to treat

the original superconformal symmetry of the scattering amplitudes as fundamental. The

additional dual conformal symmetry then extends this symmetry algebra to its Yangian [8].

The second way exchanges the roles of the original and dual copies of the superconformal

symmetry [12]. The equivalence of these two pictures should be thought of as the algebraic

realisation of the T-duality which maps scattering amplitudes to Wilson loops [35–37].

The second way of thinking about the symmetry is more important in this paper. We

will show that there is a natural (dual) conformally invariant finite quantity, described most

naturally in terms of Wilson loops, which exhibits a Yangian symmetry. The finite quantity

in question is the ratio of Wilson loops defined in [38, 39], corresponding to a choice of OPE

channel when one considers expanding some subset of light-like edges around its totally

collinear configuration.

We will be working with Wilson loops with special light-like contours contained in

a two-dimensional subspace of the full spacetime [40]. The one-loop form of the light-

like Wilson loops has been known for some time [24] to be equivalent to the one-loop

MHV amplitudes in N = 4 super Yang-Mills theory [41]. In the special two-dimensional

kinematics they can be expressed purely in terms of logarithms [40, 42]. Recently also

two-loop functions have become available for six points in general kinematics [43, 44] and

for an arbitrary number of points in the two-dimensional setup [39, 42, 45].

In the two-dimensional kinematics the conformal symmetry of the Wilson loops is bro-

ken to an sl(2)⊕ sl(2) subalgebra of the full conformal algebra sl(4). The extra symmetry

we find then corresponds to two commuting copies of the Yangian Y (sl(2)) and is best

called a Yangian symmetry of the light-like Wilson loop. It should be thought of as the
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remaining effects of the original conformal symmetry of the scattering amplitudes in the

special kinematics.

We begin by discussing representations of Yangians in section 2. We will construct

multi-parameter representations based on the coproduct and the freedom to change basis

at each stage in building up the representation on a tensor product space. Then in sec-

tion 3 we will construct some simple Yangian invariants. Of particular relevance is the

fact that we find non-trivial logarithmic functions as possible invariants. In section 4 we

discuss the geometrical setup of light-like Wilson loops in the restricted two-dimensional

kinematics. We then go on to show that a natural finite, conformally invariant ratio con-

structed from the Wilson loops is actually invariant under two commuting copies of the

Yangian Y (sl(2)). The quantity we find to be invariant is exactly the ratio defined in [38]

corresponding to a particular choice of OPE channel for expanding the Wilson loops near

a multi-collinear limit.

2 Representations of Yangians

We are interested in particular kinds of representations of Yangian algebras [46, 47] based

on the oscillator representation of the underlying algebra. We will consider sl(m) as an

example but the reasoning works also for sl(m|n) if one includes both bosonic and fermionic

oscillators. So we will consider the representation of sl(m) given by

JA
B = W A ∂

∂W B
− 1

m
δA
BW C ∂

∂W C
. (2.1)

We prefer to write the oscillators as variables W A and derivatives ∂/∂W B for A,B =

1, . . . ,m since we will eventually be interested in the space of invariant functions. The

operator

h = W C ∂

∂W C
(2.2)

is central and so we can decompose the space of functions of the W A into those of fixed

degrees of homogeneity h. Thus we can think of W as homogeneous coordinates on CP
m−1.

Our representation acts on functions with fixed degrees of homogeneity on this space (which

we will denote as F(CP
m−1)). In practice we will be interested in the case h = 0.

To obtain a representation of the Yangian of the algebra we can apply the evaluation

map [48] which constructs the level-one operator J (1) in terms of the algebra generators J .

We could do this explicitly but there is a shortcut to the answer. In order to represent the

level-one operator J (1)A
B we need to write down an operator in the adjoint representation.

Since the operator h is central (and so can be assigned some fixed numerical value) our

only choice is

J (1)
ν

A
B = ν

(

W A ∂

∂W B
− 1

m
δA
BW C ∂

∂W C

)

. (2.3)

The parameter ν is free. Together the operators JA
B and J

(1)
ν

A
B generate the Yangian

Y (sl(m)). More precisely we have defined a representation πν of the Yangian which depends

– 3 –
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on a parameter ν. The representation takes the form

πν

(

JA
B) = W A ∂

∂W B
− 1

m
δA
BW C ∂

∂W C
, (2.4)

πν

(

J (1)A
B) = ν

(

W A ∂

∂W B
− 1

m
δA
BW C ∂

∂W C

)

. (2.5)

The Yangian is a Hopf algebra so, as in [49, 50], we can construct further representa-

tions acting on the tensor product F(CP
m−1) ⊗ . . . ⊗F(CP

m−1) by using the coproduct1

∆Ja = Ja ⊗ 1 + 1 ⊗ Ja , (2.6)

∆J (1)
a = J (1)

a ⊗ 1 + 1 ⊗ J (1)
a + fa

cbJb ⊗ Jc . (2.7)

We can project the r.h.s. of each of these relations with πν1
⊗πν2

to obtain a two-parameter

representation acting on two sites,

πν1,ν2
(JA

B) =

2
∑

i=1

(

W A
i

∂

∂W B
i

− 1
m

δA
BW C

i

∂

∂W C
i

)

, (2.8)

πν1,ν2
(J (1)A

B) =

(

W A
1

∂

∂W C
1

W C
2

∂

∂W B
2

− (1, 2)

)

+

2
∑

i=1

νi

(

W A
i

∂

∂W B
i

− 1
m

δA
Bhi

)

. (2.9)

The operators

hi = W C
i

∂

∂W C
i

(2.10)

are central and so we can decompose the space of functions of the Wi into spaces of fixed

homogeneity in each of the Wi separately.

One can continue and repeated application of the coproduct and projection with πνi

on the ith site yields the representation

π~ν(J
A

B) =
n
∑

i=1

(

W A
i

∂

∂W B
i

− 1
m

δA
Bhi

)

, (2.11)

π~ν(J
(1)A

B) =
∑

i<j

(

W A
i

∂

∂W C
i

W C
j

∂

∂W B
j

− (i, j)

)

+

n
∑

i=1

νi

(

W A
i

∂

∂W B
i

− 1
m

δA
Bhi

)

. (2.12)

where ~ν = (ν1, . . . , νn). We will mostly use the symbols JA
B and J

(1)
~ν

A
B to denote this

representation of the level-zero and level-one generators. Note that the construction of the

representation has provided an ordering of the sites from 1 to n.

3 Invariants

Now let us consider functions of the Wi which are invariant under the action of the Yangian

generators J and J (1). Firstly we make a general remark that when considering invariants

1Here we use a, b, c to denote adjoint indices.
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we are free to add any amount of JA
B to J

(1)
~ν

A
B without changing the problem. We can

use this freedom to set one of the νi to some fixed value, e.g. we could set νn = 0 if we wish.

If we are just interested in sl(m)-invariant functions of the Wi then we can have any

function of the invariant quantities,

(i1 . . . im) = W A1

i1
. . . W Am

im
ǫA1...Am

. (3.1)

There are obviously no such quantities if we have fewer than m sites as the above invariants

are totally antisymmetric in all labels i1, . . . im.

If we also require homogeneous functions with degree zero in all of the Wi then we

must consider functions of homogeneous ratios of the invariants in equation (3.1). Let us

consider sl(2) as it is the simplest example and the one most relevant for this paper. The

first possibility to form a homogeneous ratio is at four sites where we can write

u =
(13)(24)

(14)(23)
. (3.2)

This is the only independent invariant we can write. The only other possibility is related

to u using the cyclic identity (ab)W A
c + (bc)W A

a + (ca)W A
b = 0,

(12)(34)

(41)(23)
= 1 − u . (3.3)

Thus the sl(2) invariant functions on four copies of (CP
1) are functions of u. Requiring

that they are also Yangian invariant functions means we have to solve the equations

J
(1)
~ν

A
Bf(u) = 0 . (3.4)

There are three independent equations here as the generators J
(1)
~ν

A
B are traceless. Ob-

viously a constant function is always a solution of the equations. We find that there is a

non-trivial solution only if ν1 − ν3 = ν2 − ν4 = 2. As we have discussed, although there are

four νi our problem only really depends on three of them, or equivalently on the three inde-

pendent differences. Since we have found two constraints from the condition of invariance

there remains a one-parameter family of non-trivial invariant functions. They are given by

hypergeometric functions,

fµ(u) =
(1 − u)1+µ

1 + µ
2F1(1, 1 + µ, 2 + µ; 1 − u) , µ = 1

2(ν2 − ν1) . (3.5)

These functions represent the only homogeneous functions at four sites which are also

Yangian invariants. Note that the representation of the Yangian was also constrained by

the analysis. Of the three independent νi, two were fixed. A particularly simple case is

when we take µ = 0, in which case we have

f0(u) = (1 − u) 2F1(1, 1, 2; 1 − u) = log u . (3.6)

We will label this logarithmic invariant by

log u = log
(13)(24)

(14)(23)
= L(1, 2, 3, 4) , (3.7)

– 5 –
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to recall the order of the Wi upon which it depends. Thus we have

JA
BL(1, 2, 3, 4) = 0 , J

(1)
~ν

A
BL(1, 2, 3, 4) = 0 , ~ν = (1, 1,−1,−1) . (3.8)

Here we have used the freedom of shifting all the νi so that ν1 = 1.

A very simple way to obtain invariants for n sites is simply to promote an invariant

at (n − 1) sites. Suppose Yn−1(1, . . . , n − 1) is an invariant under the representation with

labels ~µ at (n−1) sites. Then we can define an invariant at n sites under the representation

with labels ~ν by the definition,

Yn(1, . . . , n) ≡ Yn−1(1, . . . , n − 1) . (3.9)

Then since Y (1, . . . , n − 1) is an invariant at (n − 1) sites we have

J Yn−1(1, . . . , n − 1) = 0, J
(1)
~µ Yn−1(1, . . . , n − 1) = 0 . (3.10)

It is then simple to see that Yn(1, . . . , n) is an invariant at n sites,

J Yn(1, . . . , n) = 0, J
(1)
~ν

Yn(1, . . . , n) = 0 , (3.11)

provided we choose the vector ~ν = (~µ, νn) for any value of νn. This is exactly the adding

operation of [15], taking into account the labels ~ν defining the representation. Note that

we could have introduced the site anywhere along the chain, i.e. we could have defined

Yn(1, . . . , n) = Yn−1(1, . . . , i, i + 2, . . . , n) . (3.12)

As an example we can consider five sites and construct invariants from the logarithmic

invariant L; the combination

aL(1, 2, 4, 5) + bL(1, 3, 4, 5) + cL(2, 3, 4, 5) (3.13)

is invariant provided we choose ~ν = (1, 1, 1,−1,−1).

4 Light-like Wilson loops

We will consider Wilson loops defined on polygonal light-like contours in four-dimensional

gauge theory. Our motivation is to understand how the integrable nature of planar N = 4

super Yang-Mills theory manifests itself in the form of such Wilson loops.

Wilson loops with cusps have ultra-violet divergences. We will write the polygonal

light-like Wilson loops as follows,

log Wn =
∑

i

[UV div]i + F anom
n (x1, . . . , xn) + In(u1, . . . , um) . (4.1)

Here we have a specific divergences coming from each cusp denoted by [UV div]i. The

finite part has been split into two parts, F anom
n and In. The first is a contribution which

satisfies the anomalous Ward identity due to conformal symmetry [29, 30],

KµF anom
n (x1, . . . , xn) = Γcusp(λ)

∑

i

(2xµ
i − xµ

i−1 − xµ
i+1) log x2

i−1,i+1 . (4.2)
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Figure 1. The four different Wilson loops entering the definition of the ratio (4.3). The reference

square is shown by the dashed line. The bottom and top Wilson loops are obtained by replacing a

sequence of edges by the corresponding part of the square.

This part could be taken to be the one-loop result multiplied by the cusp anomalous dimen-

sion. In this case it coincides with BDS ansatz part of the MHV scattering amplitude [51].

However the definition of F anom
n is ambiguous because it can be modified by any function

of the available conformal invariants u1, . . . , uk (here k = 3n − 15).

Depending on the choice of the definition of the anomalous part, there is an additional

part which is just a function of conformal invariants, In. If we choose F anom
n to coincide

with the BDS ansatz for the MHV amplitude then In is the standard definition of the

‘remainder function’. In this case it is non-zero only at two loops and beyond and for six

or more points [25, 26, 52]. There are alternative definitions of the anomalous part which

modify it by adding some function of invariants and subtracting the same function from

the remainder function. An example is the definition of the ‘BDS-like’ piece of [40] where

the anomalous part depends only on the shortest distances x2
i,i+2.

A particularly interesting definition for the decomposition was made in [38]. In this

case one picks two of the light-like edges and forms a light-like square by picking two more

light-like lines intersecting them both. Then one can consider four different Wilson loops.

The original Wilson loop, the Wilson loop on the square and the Wilson loops formed

by replacing the top or bottom set of intermediate edges by the corresponding part of the

square. This is best illustrated by figure 1. One can define a conformally invariant quantity

by the following ratio of the Wilson loops,2

rn = log

(

WnWsq

WtopWbottom

)

. (4.3)

This quantity is a function of the cross-ratios u1, . . . , uk. Unlike the usual definition of the

remainder function, rn is non-zero already at one loop. It is also not cyclic invariant since

its definition required a choice of two special lines from which to form the square. This

choice essentially corresponds to the choice of OPE ‘channel’ in which one expands the

Wilson loop over exchanged intermediate excited flux tube states [38].

2In the generic situation there can be a single logarithmic divergence left in the ratio rn. This will be

absent in the ratio we study in this paper for two-dimensional loops. We would like to thank Johannes

Henn for discussions on this point.
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Figure 2. All An alternative picture for the one-loop diagrams contributing to rn. The ratio of

the Wilson loops defined in (4.3) is equivalent to the connected diagrams in the correlator of the

two loops shown here.

The quantity rn is particularly simple at one loop. It corresponds to the connected part

of the correlation between the two Wilson loops shown in figure 2. A further simplification

is obtained when considering restricted two-dimensional kinematics as in [40]. In this case

one needs an even number of sides to the Wilson loops, alternating in orientation between

the x+ direction and the x− direction as one travels round the loop. The number of

independent cross-ratios is reduced in the two-dimensional kinematics. In fact there are

(n− 6) independent ratios left from the original (3n− 15). Since n is always even the first

non-trivial ratio is therefore at eight points.

A very useful way to picture this is by drawing the Penrose diagram, putting two of

the null sides of the loop at null infinity as in [40] (see figure 3). Due to the light-like nature

of the problem, it is very useful to describe the symmetry and kinematical dependence in

terms of twistor variables. Here we mean twistor variables corresponding to light-like lines

in the configuration space of the Wilson loop (corresponding to momentum twistors [53]

when viewed from the scattering amplitude perspective).

We recall that twistors can be defined from the position variables defining the light-like

loop. Concretely we can write the light-like vectors defining the separations as a product

of commuting spinors,

xαα̇
i − xαα̇

i+1 = λα
i λ̃α̇

i . (4.4)

We can define the twistor variables W A
i = (λα

i , µα̇
i ) from the incidence relations,

µα̇
i = xαα̇

i λiα . (4.5)

The twistors W A
i transform linearly under sl(4) conformal transformations, whose gener-

ators take the simple form,

JA
B =

∑

i

(

W A
i

∂

∂W B
i

− 1
4δA

BW C
i

∂

∂W C
i

)

. (4.6)

In the special two-dimensional kinematics the twistor variables are also restricted and

preserve two commuting copies of sl(2) inside sl(4). Specifically we can decompose the W A
i

into upper and lower components each transforming under its own sl(2). The alternating
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x1x1

x2

x3

xi

xn

xi+1

w1
w2 w3

wi
wn

Figure 3. The reference square denoted by the dashed line separates the edges of the Wilson loop

into the two groups {1, . . . , i − 1} and {i, . . . , n}.

orientations of the lines corresponds to an alternating between twistors transforming under

the two copies of sl(2). We take the odd-numbered twistors to transform under the first

copy and the even-numbered ones to transform under the second copy,

W2i+1 =

(

w2i+1

0

)

, W2i =

(

0

w̄2i

)

. (4.7)

The generators of the two copies of sl(2) are then

Ja
b =

∑

i odd

(

wa
i

∂

∂wb
i

− 1
2δa

b wc
i

∂

∂wc
i

)

, J
ā

b̄ =
∑

i even

(

w̄ā
i

∂

∂w̄b̄
i

− 1
2δā

b̄
w̄c̄

i

∂

∂w̄c̄
i

)

. (4.8)

Here a, b and ā, b̄ run from 1 to 2.

Referring back to figure 3 we can identify the twistor variables with the edges. This

leads us to introduce some useful notation for rn. We will write it as a function of the

twistor variables which will be separated into two groups corresponding to the left and

right groups of edges in figure 3. Thus we have the general form

rn(1, 2, . . . , i − 1|i, i + 1, . . . , n) . (4.9)

The vertical bar serves to indicate the separation into left and right groups, corresponding

to the choice of OPE channel in [38].

We recognise in (4.8) two copies of the representation of sl(2) that we discussed previ-

ously. Thus we know how to extend each sl(2) to its Yangian. We just take the additional

generators J
(1)
~ν

and J
(1)
~̄ν

corresponding to the representations described in section 2. Let

us consider the first non-trivial case n = 8. We know from our previous analysis the form
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x1x1

x2

x3

x7

x10

xa

xb

x8

w1
w2

w3
w7

w10

Figure 4. The ten-sided Wilson loop can be expressed as the sum of the eight-sided Wilson loops

passing through points xa and xb minus the one which passes through both.

of the homogeneous invariants. Restricting to the simple integer weights we described in

section 3 we have invariants L(1, 3, 5, 7) and L(2, 4, 6, 8). The ratio rn is simple to compute

since the relevant Wilson loops are known at one loop [24] to coincide with the one-loop

MHV amplitudes [41]. In the special two-dimensional kinematics all quantities can be ex-

pressed in terms of logarithms [40, 42]. Remarkably the function r8 at one loop is none

other than [39]

r8(1, 2, 3, 4|5, 6, 7, 8) = g2L(1, 3, 5, 7)L(2, 4, 6, 8) + const. (4.10)

It is therefore Yangian invariant under two copies of the Yangian Y (sl(2)) for the choices

~ν = (1, 1,−1,−1) and ~̄ν = (1, 1,−1,−1) where the entries range over the odd and even

values of i respectively.

As pointed out in [39] there is a very simple relation between rn and rn−2 for a given

choice of reference square. This amounts to the fact that at one loop the Wilson loops are

additive in nature. As the simplest example one can write r10 as a sum over three contri-

butions of the form of r8. We will label the three contributions with a, b or ab depending

on whether the loops contain the additional points xa, xb or both. The decomposition we

have is

r10 = r8,a + r8,b − r8,ab . (4.11)

A useful diagram to represent this is figure 4.

To see exactly how the functional dependence of r10 is decomposed into contributions

of the form of r8 it is very useful to use twistor variables. If we take the twistors describing

the two-dimensional ten-sided contour to be given by {W1, . . . ,W10}, then the twistors for

the three eight-sided loops of figure 4 are given by

Ca : {W1,W4,W5,W6,W7,W8,W9,W10} ,

Cb : {W1,W2,W3,W6,W7,W8,W9,W10} ,

Cab : {W1,W4,W3,W6,W7,W8,W9,W10} . (4.12)

The twistor configurations of the original loop and the three reduced loops are shown in

figure 5. We see that the points xa and xb correspond to the twistor lines (14) and (36)

respectively.
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Figure 5. The twistor space configurations of the three contributions to r10. The points xa and

xb correspond to the lines (14) and (36) respectively.

Thus we have that r10 is given by

r10(1, 2, 3, 4, 5, 6|7, 8, 9, 10) = r8(1, 4, 5, 6|7, 8, 9, 10) + r8(1, 2, 3, 6|7, 8, 9, 10)

− r8(1, 4, 3, 6|7, 8, 9, 10)

= L(1, 5, 7, 9)L(4, 6, 8, 10) + L(1, 3, 7, 9)L(2, 6, 8, 10)

− L(1, 3, 7, 9)L(4, 6, 8, 10) (4.13)

For both w and w variables this is exactly of the form of an invariant at five points

constructed from four-point ones as in equation (3.13). We thus see that r10 is invariant

under two copies of the Yangian Y (sl(2)) with representation labels ~ν = (1, 1, 1,−1,−1)

and ~̄ν = (1, 1, 1,−1,−1).

Indeed quite generally we find that any definition of the reference square gives a Yan-

gian invariant form for the function rn. Let us take the general case in the two-dimensional

kinematics with several kinks on the top and bottom sides of the reference square (see fig-

ure 3). As described in [39] we can use the reduction argument step by step to reduce the

number of kinks on each side until we are left with a sum over eight-sided contributions.

Then the reduction procedure means we can write

rn(1, 2̄, . . . , i − 1|i, i + 1, . . . , n) = rn−2(1, 4, 5, 6, . . . |i, . . . , n)

+ rn−2(1, 2, 3, 6, . . . |i, . . . , n)

− rn−2(1, 4, 3, 6, . . . |i, . . . , n) . (4.14)

We can apply the same mechanism to the right group until we arrive at an expression

made from many terms of the form of r8(1, p, q, i − 1|i, s, t, n) for different values of p, q, s

and t. All such terms are invariants of the two copies of the Yangian Y (sl(2)) with the

representation labels ~ν = (1, . . . , 1,−1, . . . ,−1) and similarly for ~̄ν. Here the labels νi and

νi corresponding to twistors in the left group take the value 1 while those for the right group

take the value −1. Thus we conclude the rn is always invariant under the two commuting

Yangians with a natural representation corresponding to the choice of OPE channel (i.e.

choice of reference square).

The analysis we have presented here is the first indication that the Yangian symmetry

seen at the level of the tree amplitudes (or the integrand for loop amplitudes) exhibits

itself in a simple and natural way on the functions at one loop. Of course we have only two

copies of the bosonic Yangian Y (sl(2)) in the Wilson loop problem, not the full Y (psl(4|4)),
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however we believe this is a firm indication that the symmetry is still present at loop level,

acting in a predictive way and constraining the amplitudes. The fact that the conformal

symmetry extends to its Yangian is the effect of the original conformal symmetry of the

scattering amplitudes. At tree level the amplitudes can be recursively defined via the

BCFW relations, with each term being invariant by itself under the Yangian symmetry.

The situation we have seen here for the Wilson loops at one loop is similar to that at

tree-level for the scattering amplitudes. We find that the relevant finite part of the Wil-

son loop is defined recursively down to the octagonal loop. Each term appearing in the

recursive procedure is invariant on its own under the same representation of both copies of

the Yangian Y (sl(2)). We note that the representation of Y (sl(2)) we have found which

annihilates the ratio of two-dimensional Wilson loops is similar to the representation of

Y (psl(4|4)) which annihilates the tree-level amplitudes [8]. The values of the νi parame-

ters are different (they are all equal in the tree-level case). This is in part related to the

fact that the ratio we are considering is not cyclic and, related to this [8], the fact that

the algebra sl(2) does not have a vanishing Killing form. We hope that there exists a

formulation where both representations emerge from some underlying representation but

we do not know of a construction which manifests this.

The symmetry is expressed as certain second-order equations acting on the ratio rn.

In this respect it similar to the equations in [54] acting on individual loop integrals of a

certain type. One difference here is that the equations for rn are homogeneous while those

for the loop integrals are inhomogeneous. Furthermore the differential equations for the

loop integrals were valid in arbitrary kinematics while here we have restricted ourselves

to the two-dimensional setup. It will be very interesting to understand if the symmetry

persists beyond one loop and whether it extends beyond the two-dimensional kinematics

we have examined here. By simply acting with the representation on the known two-loop

result for the MHV amplitudes in two-dimensional kinematics [42] we find a non-vanishing

result. We do not know if there exists a natural deformation of the representation which

preserves invariance or if the symmetry is simply lost at two loops. The fact that this

feature appears at two loops suggests it might be related to the non-Abelian nature of

the interactions. In this regard we should point out that the results we have found for

the light-like Wilson loops hold in any gauge theory since we are only looking at one-loop

expressions. Of course if the symmetry is to persist beyond one loop it would be most

natural to find it in the planar limit of the N = 4 theory.
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