The total-evidence approach to divergence-time dating uses molecular and
morphological data from extant and fossil species to infer phylogenetic
relationships, species divergence times, and macroevolutionary parameters in a
single coherent framework. Current model-based implementations of this approach
lack an appropriate model for the tree describing the diversification and
fossilization process and can produce estimates that lead to erroneous
conclusions. We address this shortcoming by providing a total-evidence method
implemented in a Bayesian framework. This approach uses a mechanistic tree
prior to describe the underlying diversification process that generated the
tree of extant and fossil taxa. Previous attempts to apply the total-evidence
approach have used tree priors that do not account for the possibility that
fossil samples may be direct ancestors of other samples. The fossilized
birth-death (FBD) process explicitly models the diversification, fossilization,
and sampling processes and naturally allows for sampled ancestors. This model
was recently applied to estimate divergence times based on molecular data and
fossil occurrence dates. We incorporate the FBD model and a model of
morphological trait evolution into a Bayesian total-evidence approach to dating
species phylogenies. We apply this method to extant and fossil penguins and
show that the modern penguins radiated much more recently than has been
previously estimated, with the basal divergence in the crown clade occurring at
~12.7 Ma and most splits leading to extant species occurring in the last 2
million years. Our results demonstrate that including stem-fossil diversity can
greatly improve the estimates of the divergence times of crown taxa. The method
is available in BEAST2 (v. 2.4) www.beast2.org with packages SA (v. at least
1.1.4) and morph-models (v. at least 1.0.4).Comment: 50 pages, 6 figure