281 research outputs found

    Topological defects in spinor condensates

    Full text link
    We investigate the structure of topological defects in the ground states of spinor Bose-Einstein condensates with spin F=1 or F=2. The type and number of defects are determined by calculating the first and second homotopy groups of the order-parameter space. The order-parameter space is identified with a set of degenerate ground state spinors. Because the structure of the ground state depends on whether or not there is an external magnetic field applied to the system, defects are sensitive to the magnetic field. We study both cases and find that the defects in zero and non-zero field are different.Comment: 10 pages, 1 figure. Published versio

    Advanced Computational Biology Methods Identify Molecular Switches for Malignancy in an EGF Mouse Model of Liver Cancer

    Get PDF
    The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification

    Functional classification of proteins based on projection of amino acid sequences: application for prediction of protein kinase substrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The knowledge about proteins with specific interaction capacity to the protein partners is very important for the modeling of cell signaling networks. However, the experimentally-derived data are sufficiently not complete for the reconstruction of signaling pathways. This problem can be solved by the network enrichment with predicted protein interactions. The previously published <it>in silico </it>method PAAS was applied for prediction of interactions between protein kinases and their substrates.</p> <p>Results</p> <p>We used the method for recognition of the protein classes defined by the interaction with the same protein partners. 1021 protein kinase substrates classified by 45 kinases were extracted from the Phospho.ELM database and used as a training set. The reasonable accuracy of prediction calculated by leave-one-out cross validation procedure was observed in the majority of kinase-specificity classes. The random multiple splitting of the studied set onto the test and training set had also led to satisfactory results. The kinase substrate specificity for 186 proteins extracted from TRANSPATH<sup>® </sup>database was predicted by PAAS method. Several kinase-substrate interactions described in this database were correctly predicted. Using the previously developed ExPlain™ system for the reconstruction of signal transduction pathways, we showed that addition of the newly predicted interactions enabled us to find the possible path between signal trigger, TNF-alpha, and its target genes in the cell.</p> <p>Conclusions</p> <p>It was shown that the predictions of protein kinase substrates by PAAS were suitable for the enrichment of signaling pathway networks and identification of the novel signaling pathways. The on-line version of PAAS for prediction of protein kinase substrates is freely available at <url>http://www.ibmc.msk.ru/PAAS/</url>.</p

    Leading-effect vs. Risk-taking in Dynamic Tournaments: Evidence from a Real-life Randomized Experiment

    Get PDF
    Two 'order effects' may emerge in dynamic tournaments with information feedback. First, participants adjust effort across stages, which could advantage the leading participant who faces a larger 'effective prize' after an initial victory (leading-effect). Second, participants lagging behind may increase risk at the final stage as they have 'nothing to lose' (risk-taking). We use a randomized natural experiment in professional two-game soccer tournaments where the treatment (order of a stage-specific advantage) and team characteristics, e.g. ability, are independent. We develop an identification strategy to test for leading-effects controlling for risk-taking. We find no evidence of leading-effects and negligible risk-taking effects

    Database for exploration of functional context of genes implicated in ovarian cancer

    Get PDF
    Ovarian cancer (OC) is becoming the most common gynecological cancer in developed countries and the most lethal gynecological malignancy. It is also the fifth leading cause of all cancer-related deaths in women. The identification of diagnostic biomarkers and development of early detection techniques for OC largely depends on the understanding of the complex functionality and regulation of genes involved in this disease. Unfortunately, information about these OC genes is scattered throughout the literature and various databases making extraction of relevant functional information a complex task. To reduce this problem, we have developed a database dedicated to OC genes to support exploration of functional characterization and analysis of biological processes related to OC. The database contains general information about OC genes, enriched with the results of transcription regulation sequence analysis and with relevant text mining to provide insights into associations of the OC genes with other genes, metabolites, pathways and nuclear proteins. Overall, it enables exploration of relevant information for OC genes from multiple angles, making it a unique resource for OC and will serve as a useful complement to the existing public resources for those interested in OC genetics. Access is free for academic and non-profit users and database can be accessed at http://apps.sanbi.ac.za/ddoc/

    A Bayesian Search for Transcriptional Motifs

    Get PDF
    Identifying transcription factor (TF) binding sites (TFBSs) is an important step towards understanding transcriptional regulation. A common approach is to use gaplessly aligned, experimentally supported TFBSs for a particular TF, and algorithmically search for more occurrences of the same TFBSs. The largest publicly available databases of TF binding specificities contain models which are represented as position weight matrices (PWM). There are other methods using more sophisticated representations, but these have more limited databases, or aren't publicly available. Therefore, this paper focuses on methods that search using one PWM per TF. An algorithm, MATCHTM, for identifying TFBSs corresponding to a particular PWM is available, but is not based on a rigorous statistical model of TF binding, making it difficult to interpret or adjust the parameters and output of the algorithm. Furthermore, there is no public description of the algorithm sufficient to exactly reproduce it. Another algorithm, MAST, computes a p-value for the presence of a TFBS using true probabilities of finding each base at each offset from that position. We developed a statistical model, BaSeTraM, for the binding of TFs to TFBSs, taking into account random variation in the base present at each position within a TFBS. Treating the counts in the matrices and the sequences of sites as random variables, we combine this TFBS composition model with a background model to obtain a Bayesian classifier. We implemented our classifier in a package (SBaSeTraM). We tested SBaSeTraM against a MATCHTM implementation by searching all probes used in an experimental Saccharomyces cerevisiae TF binding dataset, and comparing our predictions to the data. We found no statistically significant differences in sensitivity between the algorithms (at fixed selectivity), indicating that SBaSeTraM's performance is at least comparable to the leading currently available algorithm. Our software is freely available at: http://wiki.github.com/A1kmm/sbasetram/building-the-tools

    Fast index based algorithms and software for matching position specific scoring matrices

    Get PDF
    BACKGROUND: In biological sequence analysis, position specific scoring matrices (PSSMs) are widely used to represent sequence motifs in nucleotide as well as amino acid sequences. Searching with PSSMs in complete genomes or large sequence databases is a common, but computationally expensive task. RESULTS: We present a new non-heuristic algorithm, called ESAsearch, to efficiently find matches of PSSMs in large databases. Our approach preprocesses the search space, e.g., a complete genome or a set of protein sequences, and builds an enhanced suffix array that is stored on file. This allows the searching of a database with a PSSM in sublinear expected time. Since ESAsearch benefits from small alphabets, we present a variant operating on sequences recoded according to a reduced alphabet. We also address the problem of non-comparable PSSM-scores by developing a method which allows the efficient computation of a matrix similarity threshold for a PSSM, given an E-value or a p-value. Our method is based on dynamic programming and, in contrast to other methods, it employs lazy evaluation of the dynamic programming matrix. We evaluated algorithm ESAsearch with nucleotide PSSMs and with amino acid PSSMs. Compared to the best previous methods, ESAsearch shows speedups of a factor between 17 and 275 for nucleotide PSSMs, and speedups up to factor 1.8 for amino acid PSSMs. Comparisons with the most widely used programs even show speedups by a factor of at least 3.8. Alphabet reduction yields an additional speedup factor of 2 on amino acid sequences compared to results achieved with the 20 symbol standard alphabet. The lazy evaluation method is also much faster than previous methods, with speedups of a factor between 3 and 330. CONCLUSION: Our analysis of ESAsearch reveals sublinear runtime in the expected case, and linear runtime in the worst case for sequences not shorter than | [Formula: see text] |(m )+ m - 1, where m is the length of the PSSM and [Formula: see text] a finite alphabet. In practice, ESAsearch shows superior performance over the most widely used programs, especially for DNA sequences. The new algorithm for accurate on-the-fly calculations of thresholds has the potential to replace formerly used approximation approaches. Beyond the algorithmic contributions, we provide a robust, well documented, and easy to use software package, implementing the ideas and algorithms presented in this manuscript

    A Combination of Genomic Approaches Reveals the Role of FOXO1a in Regulating an Oxidative Stress Response Pathway

    Get PDF
    Background: While many of the phenotypic differences between human and chimpanzee may result from changes in gene regulation, only a handful of functionally important regulatory differences are currently known. As a first step towards identifying transcriptional pathways that have been remodeled in the human lineage, we focused on a transcription factor, FOXO1a, which we had previously found to be up-regulated in the human liver compared to that of three other primate species. We concentrated on this gene because of its known role in the regulation of metabolism and in longevity. Methodology: Using a combination of expression profiling following siRNA knockdown and chromatin immunoprecipitation in a human liver cell line, we identified eight novel direct transcriptional targets of FOXO1a. This set includes the gene for thioredoxin-interacting protein (TXNIP), the expression of which is directly repressed by FOXO1a. The thioredoxininteracting protein is known to inhibit the reducing activity of thioredoxin (TRX), thereby hindering the cellular response to oxidative stress and affecting life span. Conclusions: Our results provide an explanation for the repeated observations that differences in the regulation of FOXO transcription factors affect longevity. Moreover, we found that TXNIP is down-regulated in human compared to chimpanzee, consistent with the up-regulation of its direct repressor FOXO1a in humans, and with differences in longevity between th
    corecore