315 research outputs found
Universal few-body physics in a harmonic trap
Few-body systems with resonant short-range interactions display universal
properties that do not depend on the details of their structure or their
interactions at short distances. In the three-body system, these properties
include the existence of a geometric spectrum of three-body Efimov states and a
discrete scaling symmetry. Similar universal properties appear in 4-body and
possibly higher-body systems as well. We set up an effective theory for
few-body systems in a harmonic trap and study the modification of universal
physics for 3- and 4-particle systems in external confinement. In particular,
we focus on systems where the Efimov effect can occur and investigate the
dependence of the 4-body spectrum on the experimental tuning parameters.Comment: 20 pages, 10 figures, final version, new references adde
Sensitivity of European Temperature to Albedo Parameterization in the Regional Climate Model COSMO-CLM Linked to Extreme Land Use Changes
Previous studies based on observations and models are uncertain about the biophysical impact of af- and deforestation in the northern hemisphere mid-latitude summers, and show either a cooling or warming. The magnitude and direction is still uncertain. In this study, the effect of three different albedo parameterizations in the regional climate model COSMO-CLM (v5.09) is examined performing afforestation experiments at 0.44° horizontal resolution across the EURO-CORDEX domain during 1986-2015. Idealized de- and af-forestation simulations are compared to a simulation with no land cover change. Emphasis is put on the impact of changes in radiation and turbulent fluxes. A clear latitudinal pattern is found, which results partly due to the strong land cover conversion from forest- to grassland in the high latitudes and open land to forest conversion in mid-latitudes. Afforestation warms the climate in winter, and strongest in mid-latitudes. Results are indifferent in summer owing to opposing albedo and evapotranspiration effects of comparable size but different sign. Thus, the net effect is small for summer. Depending on the albedo parameterization in the model, the temperature effect can turn from cooling to warming in mid-latitude summers. The summer warming due to deforestation to grassland is up to 3°C higher than due to afforestation. The cooling by grass or warming by forest is in magnitude comparable and small in winter. The strength of the described near-surface temperature changes depends on the magnitude of the individual biophysical changes in the specific background climate conditions of the region. Thus, the albedo parameterization need to account for different vegetation types. Furthermore, we found that, depending on the region, the land use change effect is more important than the model uncertainty due to albedo parameterization. This is important information for model development
Wavenumber dependence of structural alpha relaxation in a molecular liquid
Structural alpha relaxation in liquid orthoterphenyl is studied by means of
coherent neutron time-of-flight and backscattering spectroscopy over a large
temperature range. Not only amplitude and relaxation time but also the spectral
line shape show a significant variation with wavenumber. As expected from mode
coupling theory, these variations are correlated with the static structure
factor. Even far above the melting point, alpha relaxation remains
non-exponential.Comment: 6 pages of LaTeX, 4 figure
Fast relaxation in a fragile liquid under pressure
The incoherent dynamic structure factor of ortho-terphenyl has been measured
by neutron time-of-flight and backscattering technique in the pressure range
from 0.1 MPa to 240 MPa for temperatures between 301 K and 335 K.
Tagged-particle correlations in the compressed liquid decay in two steps. The
alpha-relaxation lineshape is independent of pressure, and the relaxation time
proportional to viscosity. A kink in the amplitude f_Q(P) reveals the onset of
beta relaxation. The beta-relaxation regime can be described by the
mode-coupling scaling function; amplitudes and time scales allow a consistent
determination of the critical pressure P_c(T). alpha and beta relaxation depend
in the same way on the thermodynamic state; close to the mode-coupling
cross-over, this dependence can be parametrised by an effective coupling Gamma
~ n*T**{-1/4}.Comment: 4 Pages of RevTeX, 4 figures (submitted to Physical Review Letters
Sensitivity of european temperature to albedo parameterization in the regional climate model COSMO-CLM linked to extreme land use changes
Previous studies based on observations and models are uncertain about the biophysical impact of af- and deforestation in the northern hemisphere mid-latitude summers, and show either a cooling or warming. The spatial distribution, magnitude and direction are still uncertain. In this study, the effect of three different albedo parameterizations in the regional climate model COSMO-CLM (v5.09) is examined performing idealized experiments at 0.44° horizontal resolution across the EURO-CORDEX domain during 1986–2015. De- and af-forestation simulations are compared to a simulation with no land cover change. Emphasis is put on the impact of changes in radiation and turbulent fluxes. A clear latitudinal pattern is found, which results partly due to the strong land cover conversion from forest- to grassland in the high latitudes and open land to forest conversion in mid-latitudes. Afforestation warms the climate in winter, and strongest in mid-latitudes. Results are indifferent in summer owing to opposing albedo and evapotranspiration effects of comparable size but different sign. Thus, the net effect is small for summer. Depending on the albedo parameterization in the model, the temperature effect can turn from cooling to warming in mid-latitude summers. The summer warming due to deforestation to grassland is up to 3°C higher than due to afforestation. The cooling by grass or warming by forest is in magnitude comparable and small in winter. The strength of the described near-surface temperature changes depends on the magnitude of the individual biophysical changes in the specific background climate conditions of the region. Thus, the albedo parameterization need to account for different vegetation types. Furthermore, we found that, depending on the region, the land cover change effect is more important than the model uncertainty due to albedo parameterization. This is important information for model development
Effect of entropy on the dynamics of supercooled liquids: New results from high pressure data
We show that for arbitrary thermodynamic conditions, master curves of the
entropy are obtained by expressing S(T,V) as a function of TV^g_G, where T is
temperature, V specific volume, and g_G the thermodynamic Gruneisen parameter.
A similar scaling is known for structural relaxation times,tau = f(TV^g);
however, we find g_G < g. We show herein that this inequality reflects
contributions to S(T,V) from processes, such as vibrations and secondary
relaxations, that do not directly influence the supercooled dynamics. An
approximate method is proposed to remove these contributions, S_0, yielding the
relationship tau = f(S-S_0).Comment: 10 pages 7 figure
Structural relaxation in a system of dumbbell molecules
The interaction-site-density-fluctuation correlators, the dipole-relaxation
functions, and the mean-squared displacements of a system of symmetric
dumbbells of fused hard spheres are calculated for two representative
elongations of the molecules within the mode-coupling theory for the evolution
of glassy dynamics. For large elongations, universal relaxation laws for states
near the glass transition are valid for parameters and time intervals similar
to the ones found for the hard-sphere system. Rotation-translation coupling
leads to an enlarged crossover interval for the mean-squared displacement of
the constituent atoms between the end of the von Schweidler regime and the
beginning of the diffusion process. For small elongations, the superposition
principle for the reorientational -process is violated for parameters
and time intervals of interest for data analysis, and there is a strong
breaking of the coupling of the -relaxation scale for the diffusion
process with that for representative density fluctuations and for dipole
reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres
Ice XII in its second regime of metastability
We present neutron powder diffraction results which give unambiguous evidence
for the formation of the recently identified new crystalline ice phase[Lobban
et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different
conditions. Ice XII is produced here by compressing hexagonal ice I_h at T =
77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure
in the temperature range 1.5 < T < 135 K. High resolution diffraction is
carried out at T = 1.5 K and ambient pressure on ice XII and accurate
structural properties are obtained from Rietveld refinement. At T = 140 and 160
K additionally ice III/IX is formed. The increasing amount of ice III/IX with
increasing temperature gives an upper limit of T ~ 150 K for the successful
formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review
Letters
- …