14 research outputs found
Sorogrupos e genes de virulência em Escherichia coli isoladas de psitacídeos
Escherichia coli isolates from 24 sick psittacine birds were serogrouped and investigated for the presence of genes encoding the following virulence factors: attaching and effacing (eae), enteropathogenic E. coli EAF plasmid (EAF), pili associated with pyelonephritis (pap), S fimbriae (sfa), afimbrial adhesin (afa), capsule K1 (neu), curli (crl, csgA), temperature-sensitive hemagglutinin (tsh), enteroaggregative heat-stable enterotoxin-1 (astA), heat-stable enterotoxin -1 heat labile (LT) and heat stable (STa and STb) enterotoxins, Shiga-like toxins (stx1 and stx2), cytotoxic necrotizing factor 1 (cnf1), haemolysin (hly), aerobactin production (iuc) and serum resistance (iss). The results showed that the isolates belonged to 12 serogroups: O7; O15; O21; O23; O54; O64; O76; O84; O88; O128; O152 and O166. The virulence genes found were: crl in all isolates, pap in 10 isolates, iss in seven isolates, csgA in five isolates, iuc and tsh in three isolates and eae in two isolates. The combination of virulence genes revealed 11 different genotypic patterns. All strains were negative for genes encoding for EAF, EAEC, K1, sfa, afa, hly, cnf, LT, STa, STb, stx1 and stx2. Our findings showed that some E. coli isolated from psittacine birds present the same virulence factors as avian pathogenic E. coli (APEC), uropathogenic E. coli (UPEC) and Enteropathogenic E. coli (EPEC) pathotypes.Amostras de Escherichia coli isoladas de 24 psitacídeos doentes foram sorogrupadas e investigadas para a presença de genes que codificam os seguintes fatores de virulência: attaching e effacing (eae), plasmídeo EAF (EAF), pili associado à pielonefrite (pap), fímbria S (sfa), adesina afimbrial (afa), cápsula K1 (neu), curli (crl, csgA), hemaglutinina termosensível (tsh), enterotoxina termo-estável 1 de E. coli enteroagregativa (astA), toxina termolábil (LT) e toxina termoestável (STa e STb), Shiga-like toxinas (stx1 e stx2), fator citotóxico necrotizante 1 (cnf1), hemolisina (hly), produção de aerobactina (iuc) e resistência sérica (iss). Os resultados mostraram que os isolados pertenciam a 12 sorogrupos: O7; O15; O21; O23; O54; O64; O76; O84; O88; O128; O152 e O166. Os genes de virulência encontrados foram: crl em todos os isolados, pap em 10 isolados, iss em sete isolados, csgA em cinco isolados, iuc e tsh em três isolados e eae em dois isolados. A combinação dos genes de virulência revelou 11 perfis genotípicos distintos. Todas as amostras foram negativas para os genes que codificam EAF, EAEC, K1, sfa, afa, hly, cnf, LT, STa, STb, stx1 e stx2. Estes resultados demonstraram que algumas amostras de E. coli isoladas de psitacídeos apresentam os mesmos fatores de virulência presentes nos patotipos de E. coli patogênicas para aves (APEC), uropatogênicas (UPEC) e E. coli enteropatogênicas (EPEC).916921Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
Emerging Enteropathogenic Escherichia coli Strains?
Escherichia coli strains of nonenteropathogenic serogroups carrying eae but lacking the enteropathogenic E. coli adherence factor plasmid and Shiga toxin DNA probe sequences were isolated from patients (children, adults, and AIDS patients) with and without diarrhea in Brazil. Although diverse in phenotype and genotype, some strains are potentially diarrheagenic
The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications
Genetic relatedness and virulence properties of enteropathogenic Escherichia coli strains of serotype O119: H6 expressing localized adherence or localized and aggregative adherence-like patterns on HeLa cells
Enteropathogenic Escherichia coli (EPEC) induce attaching and effacing (A/E) lesions in enterocytes and produce the bundle-forming pilus (BFP) contributing to the localized adherence (LA) pattern formation on HeLa cells. Enteroaggregative E. coli (EAEC) produce aggregative adherence (AA) on HeLa cells and form prominent biofilms. The ability to produce LA or AA is an important hallmark to classify fecal E. coli isolates as EPEC or EAEC, respectively. E. coli strains of serotype O119:H6 exhibit an LA+ phenotype and have been considered as comprising a clonal group. of EPEC strains. However, we have recently identified O119:H6 EPEC strains that produce LA and an AA-like pattern concurrently (LA/AA-like+). In this study, we evaluated the relatedness of three LA/AA-like+ and three LA+ O119:H6 strains by comparing their virulence and genotypic properties. We first found that the LA/AA-like+ strains induced actin accumulation in HeLa cells (indicative of A/E lesions formation) and formed biofilms on abiotic surfaces more efficiently than the LA+ strains. MLST analysis showed that the six strains all belong to the ST28 complex. All strains carried multiple plasmids, but as plasmid profiles were highly variable, this cannot be used to differentiate LA/AA-like+ and LA+ strains. We further obtained their draft genome sequences and the complete sequences of four plasmids harbored by one LA/AA-like+ strain. Analysis of these sequences and comparison with 37 fully sequenced E. coli genomes revealed that both O119:H6 groups belong to the E. coli phylogroup B2 and are very closely related with only 58-67 SNPs found between LA/AA-like+ and LA+ strains. Search of the draft sequences of the six strains for adhesion-related genes known in EAEC and other E. coli pathotypes detected no genes specifically present in LA/AA-like+ strains. Unexpectedly however, we found that a large plasmid distinct from pEAF is responsible for the AA-like phenotype of the LA/AA-like+ strains. Although we have not identified any plasmid genes specifically present in all LA/AA-like+ strains and absent in the LA+ strains, these results suggest the presence of an unknown mechanism to promote the AA-like pattern production and biofilm formation by the LA/AA-like+ strains. Because their ability to produce A/E lesions and biofilm concomitantly could exacerbate the clinical condition of the patient and lead to persistent diarrhea, the mechanism underlying the enhanced biofilm formation by the LA/AA-like+ O119:H6 strains and their spread and involvement in severe diarrheal diseases should be more intensively investigated
Clinical Significance of Escherichia albertii
Discriminating Escherichia albertii from other Enterobacteriaceae is difficult. Systematic analyses showed that E. albertii represents a substantial portion of strains currently identified as eae-positive Escherichia coli and includes Shiga toxin 2f–producing strains. Because E. albertii possesses the eae gene, many strains might have been misidentified as enterohemorrhagic or enteropathogenic E. coli