171 research outputs found

    Influence of exciton spin relaxation on the photoluminescence spectra of semimagnetic quantum dots

    Full text link
    We present a comprehensive experimental and theoretical studies of photoluminescence of single CdMnTe quantum dots with Mn content x ranging from 0.01 to 0.2. We distinguish three stages of the equilibration of the exciton-Mn ion spin system and show that the intermediate stage, in which the exciton spin is relaxed, while the total equilibrium is not attained, gives rise to a specific asymmetric shape of the photoluminescence spectrum. From an excellent agreement between the measured and calculated spectra we are able to evaluate the exciton localization volume, number of paramagnetic Mn ions, and their temperature for each particular dot. We discuss the values of these parameters and compare them with results of other experiments. Furthermore, we analyze the dependence of average Zeeman shifts and transition linewidths on the Mn content and point out specific processes, which control these values at particular Mn concentrations.Comment: submitted to Phys. Rev.

    MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose.

    Get PDF
    Background and purposeThe purpose of this work is to present the clinical experience from the first-in-human trial of real-time tumor targeting via MLC tracking for stereotactic ablative body radiotherapy (SABR) of lung lesions.Methods and materialsSeventeen patients with stage 1 non-small cell lung cancer (NSCLC) or lung metastases were included in a study of electromagnetic transponder-guided MLC tracking for SABR (NCT02514512). Patients had electromagnetic transponders inserted near the tumor. An MLC tracking SABR plan was generated with planning target volume (PTV) expanded 5 mm from the end-exhale gross tumor volume (GTV). A clinically approved comparator plan was generated with PTV expanded 5 mm from a 4DCT-derived internal target volume (ITV). Treatment was delivered using a standard linear accelerator to continuously adapt the MLC based on transponder motion. Treated volumes and reconstructed delivered dose were compared between MLC tracking and comparator ITV-based treatment.ResultsAll seventeen patients were successfully treated with MLC tracking (70 successful fractions). MLC tracking treatment delivery time averaged 8 minutes. The time from the start of CBCT to the end of treatment averaged 22 minutes. The MLC tracking PTV for 16/17 patients was smaller than the ITV-based PTV (range -1.6% to 44% reduction, or -0.6 to 18 cc). Reductions in mean lung dose (27 cGy) and V20Gy (50 cc) were statistically significant (p ConclusionThe first treatments with lung MLC tracking have been successfully performed in seventeen SABR patients. MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose

    Geometric uncertainty analysis of MLC tracking for lung SABR.

    Get PDF
    Purpose: The purpose of this work was to report on the geometric uncertainty for patients treated with multi-leaf collimator (MLC) tracking for lung SABR to verify the accuracy of the system. Methods: Seventeen patients were treated as part of the MLC tracking for lung SABR clinical trial using electromagnetic beacons implanted around the tumor acting as a surrogate for target motion. Sources of uncertainties evaluated in the study included the surrogate-target positional uncertainty, the beam-surrogate tracking uncertainty, the surrogate localization uncertainty, and the target delineation uncertainty. Probability density functions (PDFs) for each source of uncertainty were constructed for the cohort and each patient. The total PDFs was computed using a convolution approach. The 95% confidence interval (CI) was used to quantify these uncertainties. Results: For the cohort, the surrogate-target positional uncertainty 95% CIs were ±2.5 mm (-2.0/3.0 mm) in left-right (LR), ±3.0 mm (-1.6/4.5 mm) in superior-inferior (SI) and ±2.0 mm (-1.8/2.1 mm) in anterior-posterior (AP). The beam-surrogate tracking uncertainty 95% CIs were ±2.1 mm (-2.1/2.1 mm) in LR, ±2.8 mm (-2.8/2.7 mm) in SI and ±2.1 mm (-2.1/2.0 mm) in AP directions. The surrogate localization uncertainty minimally impacted the total PDF with a width of ±0.6 mm. The target delineation uncertainty distribution 95% CIs were ±5.4 mm. For the total PDF, the 95% CIs were ±5.9 mm (-5.8/6.0 mm) in LR, ±6.7 mm (-5.8/7.5 mm) in SI and ±6.0 mm (-5.5/6.5 mm) in AP. Conclusion: This work reports the geometric uncertainty of MLC tracking for lung SABR by accounting for the main sources of uncertainties that occurred during treatment. The overall geometric uncertainty is within ±6.0 mm in LR and AP directions and ±6.7 mm in SI. The dominant uncertainty was the target delineation uncertainty. This geometric analysis helps put into context the range of uncertainties that may be expected during MLC tracking for lung SABR (ClinicalTrials.gov registration number: NCT02514512

    Sapling size influences shade tolerance ranking among southern boreal tree species

    Get PDF
    1 Traditional rankings of shade tolerance of trees make little reference to individual size. However, greater respiratory loads with increasing sapling size imply that larger individuals will be less able to tolerate shade than smaller individuals of the same species and that there may be shifts among species in shade tolerance with size. 2 We tested this hypothesis using maximum likelihood estimation to develop individual-tree-based models of the probability of mortality as a function of recent growth rate for seven species: trembling aspen, paper birch, yellow birch, mountain maple, white spruce, balsam fir and eastern white cedar. 3 Shade tolerance of small individuals, as quantified by risk of mortality at low growth, was mostly consistent with traditional shade tolerance rankings such that cedar > balsam fir > white spruce > yellow birch > mountain maple = paper birch > aspen. 4 Differences in growth-dependent mortality were greatest between species in the smallest size classes. With increasing size, a reduced tolerance to shade was observed for all species except trembling aspen and thus species tended to converge in shade tolerance with size. At a given level of radial growth larger trees, apart from aspen, had a higher probability of mortality than smaller trees. 5 Successional processes associated with shade tolerance may thus be most important in the seedling stage and decrease with ontogeny

    Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin

    Get PDF
    In bone disorders infections are common. The concentration of majority of antibiotics is very low in the bone tissue. A high local dose can be obtained from the ciprofloxacin-loaded hydroxyapatite nanoparticles. The present study is aimed at developing the use of hydroxyapatite and zinc-doped hydroxyapatite nanoparticles as a carrier for ciprofloxacin drug delivery system. The ciprofloxacin-loaded hydroxyapatite and zinc-doped hydroxyapatite have a good antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Hydroxyapatite and zinc-doped hydroxyapatite were prepared and characterized using X-ray diffraction, Transmission electron microscopy and inductively coupled plasma optical emission spectrometry. They were loaded with ciprofloxacin using optimized drug loading parameters. Drug loading, in vitro drug release and antimicrobial activity were analyzed. The influence of zinc on the controlled release of ciprofloxacin was analyzed. The results show that the presence of zinc increases the drug release percentage and that the drug was released in a controlled manner

    Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ring species, exemplified by salamanders of the <it>Ensatina eschscholtzii </it>complex, represent a special window into the speciation process because they allow the history of species formation to be traced back in time through the geographically differentiated forms connecting the two terminal forms of the ring. Of particular interest is the nature and extent of reproductive isolation between the geographically terminal forms, in this case <it>E. e. eschscholtzii </it>and <it>E. e. klauberi</it>. Previous studies have documented infrequent hybridization at the end of the ring. Here, we report the first fine-scale genetic analysis of a hybrid zone between the terminal forms in southern California using individual-based Bayesian analyses of multilocus genetic data to estimate levels and direction of hybridization and maximum-likelihood analysis of linkage disequilibrium and cline shape to make inferences about migration and selection in the hybrid zone.</p> <p>Results</p> <p>The center of the hybrid zone has a high proportion of hybrids, about half of which were classified as F1s. Clines are narrow with respect to dispersal, and there are significant deviations from Hardy-Weinberg equilibrium as well as nonrandom associations (linkage disequilibria) between alleles characteristic of each parental type. There is cytonuclear discordance, both in terms of introgression and the geographic position of mitochondrial versus nuclear clines. Genetic disequilibrium is concentrated on the <it>eschscholtzii </it>side of the zone. Nearly all hybrids possess <it>klauberi </it>mtDNA, indicating that most hybrids are formed from female <it>klauberi </it>mating with male <it>eschscholtzii </it>or male hybrids (but not vice versa).</p> <p>Conclusions</p> <p>Our results are consistent with a tension zone trapped at an ecotone, with gene combinations characteristic of <it>klauberi </it>showing up on the <it>eschscholtzii </it>side of the zone due to asymmetric hybridization. We suggest that the observed asymmetry is best explained by increased discriminatory power of <it>eschscholtzii </it>females, or asymmetric postzygotic isolation. The relatively high frequency of hybrids, particularly F1s, contrasts with other contacts between the terminal forms, and with other contacts between other divergent <it>Ensatina </it>lineages, highlighting the diverse outcomes of secondary contact within a single species complex.</p
    corecore