125 research outputs found
Stability Control on Ro-Ro Passenger Ships as the Main Factor of Shipâs Safety
On Ro-Ro passenger ship the wide spectrum of captainâs responsibilities should be taken into consideration. One of the important responsibilities is the shipâs stability examination. The other measures as the shipâs condition, wind on ship with large windage area, rolling characteristics, severe seas etc., are important for ensuring the safe operating of ship, to minimize the risk to the ship, to the personnel and passengers on board, and to the environment. The international convention for the Safety of Life At Sea â (SOLAS 90) make into fact the continual development of safety standards in the 111 years since the sinking of the Titanic. Important enhancement stability, operational requirements and damage stability requirements were made as a consequence of several disasters at sea: âTorrey Canyonâ in 1967, âHerald of Free Enterpriseâ in 1987 (183 dead), âExon Valdezâ in 1989, âBraerâ in 1993, âEstoniaâ in 1994 (892 dead). In particular the dramatic loss of the Ro-Ro/Passenger vessels M/F âHerald of Free Enterpriseâ in 1987, and M/F âEstoniaâ in 1994, respectively, has resulted in the international regulation requiring enhanced damage stability requirements for this type of vessels, and in more stringent damage stability criteria adopted on a regional basis by Northern European countries (Stockholm Agreement, 1977)
Adsorption and self-assembly of large polycyclic molecules on the surfaces of TiO_{2} single crystals
Titanium dioxide is one of the most frequently studied metal oxides, and its (110) rutile surface serves as a prototypical model for the surface science of such materials. Recent studies have also shown that the (011) surface is relatively easy for preparation in ultra-high vacuum (UHV) and that both the (110) and (011) surfaces could be precisely characterized using scanning tunneling microscopy (STM). The supramolecular self-assembly of organic molecules on the surfaces of titanium dioxide plays an important role in nanofabrication, and it can control the formation and properties of nanostructures, leading to wide range of applications covering the fields of catalysis, coatings and fabrication of sensors and extends to the optoelectronic industry and medical usage. Although the majority of experiments and theoretical calculations are focused on the adsorption of relatively small organic species, in recent years, there has been increasing interest in the properties of larger molecules that have several aromatic rings in which functional units could also be observed. The purpose of this review is to summarize the achievements in the study of single polycyclic molecules and thin layers adsorbed onto the surfaces of single crystalline titanium dioxide over the past decade
Higher acenes by onâsurfacedehydrogenation : from heptacene to undecacene
A unified approach to the synthesis of the series of higher acenes up to previously unreported undecacene has been developed through the onâsurface dehydrogenation of partially saturated precursors. These molecules could be converted into the parent acenes by both atomic manipulation with the tip of a scanning tunneling and atomic force microscope (STM/AFM) as well as by onâsurface annealing. The structure of the generated acenes has been visualized by highâresolution nonâcontact AFM imaging and the evolution of the transport gap with the increase of the number of fused benzene rings has been determined on the basis of scanning tunneling spectroscopy (STS) measurements
Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface
Self-assembly of iron(II) phthalocyanine (FePc) molecules on a Ge(001):H surface results in monolayer islands extending over hundreds of nanometers and comprising upright-oriented entities. Scanning tunneling spectroscopy reveals a transport gap of 2.70 eV in agreement with other reports regarding isolated FePc molecules. Detailed analysis of single FePc molecules trapped at surface defects indicates that the molecules stay intact upon adsorption and can be manipulated away from surface defects onto a perfectly hydrogenated surface. This allows for their isolation from the germanium surface
Molecular spectroscopic markers of DNA damage
Every cell in a living organism is constantly exposed to physical and chemical factors which damage the molecular structure of proteins, lipids, and nucleic acids. Cellular DNA lesions are the most dangerous because the genetic information, critical for the identity and function of each eukaryotic cell, is stored in the DNA. In this review, we describe spectroscopic markers of DNA damage, which can be detected by infrared, Raman, surface-enhanced Raman, and tip-enhanced Raman spectroscopies, using data acquired from DNA solutions and mammalian cells. Various physical and chemical DNA damaging factors are taken into consideration, including ionizing and non-ionizing radiation, chemicals, and chemotherapeutic compounds. All major spectral markers of DNA damage are presented in several tables, to give the reader a possibility of fast identification of the spectral signature related to a particular type of DNA damage
Nanomechanical sensing of the endothelial cell response to anti-inflammatory action of 1-methylnicotinamide chloride
There is increasing evidence that cell elastic properties should change considerably in response to chemical agents affecting the physiological state of the endothelium. In this work, a novel assay for testing prospective endothelium-targeted agents in vitro is presented. The proposed methodology is based on nanoindentation spectroscopy using an atomic force microscope tip, which allows for quantitative evaluation of cell stiffness. As an example, we chose a pyridine derivative, 1-methylnicotinamide chloride (MNA), known to have antithrombotic and anti-inflammatory properties, as reported in recent in vivo experiments. First, we determined a concentration range of MNA in which physiological parameters of the endothelial cells in vitro are not affected. Then, cell dysfunction was induced by incubation with tumor necrosis factor-alpha (TNF-α) and the cellular response to MNA treatment after TNF-α incubation was studied. In parallel to the nanoindentation spectroscopy, the endothelium phenotype was characterized using a fluorescence spectroscopy with F-actin labeling, and biochemical methods, such as secretion measurements of both nitric oxide (NO), and prostacyclin (PGI2) regulatory agents. We found that MNA could reverse the dysfunction of the endothelium caused by inflammation, if applied in the proper time and to the concentration scheme established in our investigations. A surprisingly close correlation was found between effective Young's modulus of the cells and actin polymerization/depolymerization processes in the endothelium cortical cytoskeleton, as well as NO and PGI_{2] levels. These results allow us to construct the physiological model of sequential intracellular pathways activated in the endothelium by MNA
Stiffness memory of EA.hy926 endothelial cells in response to chronic hyperglycemia
Background: Glycemic memory of endothelial cells is an effect of long-lasting hyperglycemia and is a cause of various diabetics complications, that arises despite of the treatment targeted towards returning low glucose level in blood system. On the other hand, endothelial dysfunction, which is believed to be a main cause of cardiovascular complications, is exhibited in the changes of mechanical properties of cells. Although formation of the glycemic memory was widely investigated, its impact on the mechanical properties of endothelial cells has not been studied yet. Methods: In this study, nanoindentaion with a tip of an atomic force microscope was used to probe the long-term changes (through 26 passages, c.a. 80 days) in mechanical properties of EA.hy926 endothelial cells cultured in hyperglycemic conditions. As a complementary method, alterations in the structure of actin cytoskeleton were visualized by fluorescent staining of F-actin. Results: We observed a gradual stiffening of the cells up to 20th passage for cells cultured in high glucose (25 mM). Fluorescence imaging has revealed that this behavior resulted from systematic remodeling of the actin cytoskeleton. In further passages, a drop in stiffness had occurred. The most interesting finding was recorded for cells transferred after 14 passages from high glucose to normal glucose conditions (5mM). After the transfer, the initial drop in stiffness was followed by a return of the cell stiffness to the value previously observed for cells cultured constantly in high glucose. Conclusions: Our results indicate that glycemic memory causes irreversible changes in stiffness of endothelial cells. The formation of the observed "stiffness memory" could be important in the context of vascular complications which develop despite the normalization of the glucose level
Atomic force microscopy reveals the dynamic morphology of fenestrations in live liver sinusoidal endothelial cells
Here, we report an atomic force microscopy (AFM)-based imaging method for resolving the fine nanostructures (e.g., fenestrations) in the membranes of live primary murine liver sinusoidal endothelial cells (LSECs). From data on topographical and nanomechanical properties of the selected cell areas collected within 1âmin, we traced the dynamic rearrangement of the cell actin cytoskeleton connected with the formation or closing of cell fenestrations, both in non-stimulated LSECs as well as in response to cytochalasin B and antimycin A. In conclusion, AFM-based imaging permitted the near real-time measurements of dynamic changes in fenestrations in live LSECs
Dynamic force measurements of avidin-biotin and streptavdin-biotin interactions using AFM
Using atomic force microscopy (AFM) we performed dynamic force measurements of the adhesive forces in two model systems: avidin-biotin and streptavidin-biotin. In our experiments we used glutaraldehyde for immobilization of (strept)avidin on the tip and biotin on the sample surface. Such interface layers are more rigid than those usually reported in the literature for AFM studies, when (strept)avidin is coupled with biotinylated bovine albumin and biotin with agarose polymers. We determined the dependence of the rupture forces of avidin-biotin and streptavidin-biotin bonds in the range 300-9600 pN/s. The slope of a semilogarithmic plot of this relation changes at about 1700 pN/s. The existence of two different regimes indicates the presence of two activation barriers of these complexes during the dissociation process. The dissociation rates and activation energy barriers, calculated from the Bell model, for the avidin-biotin and streptavidin-biotin interactions are similar to each other for loading rates > 1700 pN/s but they are different from each other for loading rates < 1700 pN/s. In the latter case, the dissociation rates show a higher stability of the avidin-biotin complex than the streptavidin-biotin complex due to a larger outer activation barrier of 0.8 k(B)T. The bond-rupture force is about 20 pN higher for the avidin-biotin pair than for the streptavidin-biotin pair for loading rates < 1700 pN/s. These two experimental observations are in agreement with the known structural differences between the biotin binding pocket of avidin and of streptavidin
Elasticity changes anti-correlate with NO production for human endothelial cells stimulated with TNF-
Tumor necrosis factor alpha (TNF-) is a critical cytokine that is involved in systemic inflammatory response and contributes to the activation of the pro-inflammatory phenotype of the endothelium. In the present study, effects of TNF- on morphology and elasticity of endothelium in relation to the production of NO and actin fiber reorganization were analyzed in human dermal microvascular endothelial cells. The cells were incubated in MCDB medium solution and stimulated with 10ng/ml of TNF-. Atomic force microscopy measurements have enabled characterization of cell morphology and elastic properties in physiological conditions. The spectrophotometric Griess method was applied to estimate nitric oxide (NO) production of the cells. We demonstrated that TNF--induced changes in elasticity of endothelium anti-correlate with NO production and are associated with the reorganization of actin cytoskeleton
- âŠ