7 research outputs found

    Genotype and Phenotype in 12 additional individuals with SATB2-Associated Syndrome

    Get PDF
    SATB2-associated syndrome (SAS) is a multisystemic disorder caused by alterations of the SATB2 gene. We describe the phenotype and genotype of 12 individuals with 10 unique (de novo in 11 of 11 tested) pathogenic variants (1 splice site, 5 frameshift, 3 nonsense, and 2 missense) in SATB2 and review all cases reported in the published literature caused by point alterations thus far. In the cohort here described, developmental delay (DD) with severe speech compromise, facial dysmorphism, and dental anomalies were present in all cases. We also present the third case of tibial bowing in an individual who, just as in the previous 2 individuals in the literature, also had a truncating pathogenic variant of SATB2. We explore early genotype-phenotype correlations and reaffirm the main clinical features of this recognizable syndrome: universal DD with severe speech impediment, mild facial dysmorphism, and high frequency of craniofacial anomalies, behavioral issues, and brain neuroradiographic changes. As the recently proposed surveillance guidelines for individuals with SAS are adopted by providers, further delineation of the frequency and impact of other phenotypic traits will become available. Similarly, as new cases of SAS are identified, further exploration of genotype-phenotype correlations will be possible

    Mosaicism of the UDP-Galactose Transporter SLC35A2 Causes a Congenital Disorder of Glycosylation

    Get PDF
    Biochemical analysis and whole-exome sequencing identified mutations in the Golgi-localized UDP-galactose transporter SLC35A2 that define an undiagnosed X-linked congenital disorder of glycosylation (CDG) in three unrelated families. Each mutation reduced UDP-galactose transport, leading to galactose-deficient glycoproteins. Two affected males were somatic mosaics, suggesting that a wild-type SLC35A2 allele may be required for survival. In infancy, the commonly used biomarker transferrin showed abnormal glycosylation, but its appearance became normal later in childhood, without any corresponding clinical improvement. This may indicate selection against cells carrying the mutant allele. To detect other individuals with such mutations, we suggest transferrin testing in infancy. Here, we report somatic mosaicism in CDG, and our work stresses the importance of combining both genetic and biochemical diagnoses

    Mutations that alter the carboxy-terminal-propeptide cleavage site of the chains of type I procollagen are associated with a unique osteogenesis imperfecta phenotype

    No full text
    Osteogenesis imperfecta (OI) is a genetic bone disorder characterized by fractures, low bone mass, and skeletal fragility. It most commonly arises from dominantly inherited mutations in the genes COL1A1 and COL1A2 that encode the chains of type I collagen. A number of recent reports have suggested that mutations affecting the carboxyl‐terminal propeptide cleavage site in the products of either COL1A1 or COL1A2 give rise to a form of OI characterized by unusually dense bones. We have assembled clinical, biochemical, and molecular data from 29 individuals from 8 families with 7 different mutations affecting the C‐propeptide cleavage site. The phenotype was generally mild: The median height was ∼33th centile. Eighty percent of subjects had their first fracture by the age of 10 years, and one‐third had a femoral or tibial fracture by the age of 25 years. Fractures continued into adulthood, though rates varied considerably. Healing was normal and rarely resulted in long bone deformity. One‐third of subjects older than 15 years had scoliosis. The teeth and hearing were normal in most, and blue sclerae were not observed. Other features noted included fibro‐osseous dysplasia of the mandible and Achilles tendon calcification. The mean spinal bone mineral density Z‐score was +2.9 (SD 2.1) compared with –2.2 (0.7) in subjects with COL1A1 haploinsufficiency mutations. Bone mineral density distribution, assessed by quantitative backscattered electron imaging in bone showed higher levels of mineralization than found in any other disorder. Bone histology showed high trabecular volume and increased cortical thickness, with hyperosteoidosis and delayed mineralization. In vitro studies with cultured skin fibroblasts suggested that these mutations interfere with processing of the chain in which the sequence alteration occurs, but the C‐propeptide is eventually cleaved (and detectable in blood), suggesting there are alternative sites of cleavage. The precise mechanism of the bony pathology is not yet clear

    Analysis of gene expression data from Massive Parallel Sequencing identifies so far uncharacterised regulators for meiosis with one candidate being fundamental for prophase I in male and female meiosis

    Get PDF
    Meiosis is a specialized division of germ cells in sexually reproducing organisms, which is a fundamental process with key implications for evolution and biodiversity. In two consecutive rounds of cell division, meiosis I and meiosis II, a normal, diploid set of chromosome is halved. From diploid mother cells haploid gametes are generated to create genetic individual cells. This genetic uniqueness is obtained during prophase of meiosis I by essential meiotic processes in meiotic recombination, as double strand break (DSB) formation and repair, formation of crossovers (CO) and holiday junctions (HJs). Checkpoint mechanisms ensure a smooth progress of these events. Despite extensive research key mechanisms are still not understood. Based on an analysis of Massive Parallel Sequencing (MPS) data I could identify 2 genes, Mcmdc2 and Prr19, with high implication in meiotic recombination. In the absence of Mcmdc2 both sexes are infertile and meiocytes arrest at a stage equivalent to mid-­‐pachytene in wt. Investigations of the synaptonemal complex (SC) formation revealed severe defects suggesting a role for MCMDC2 in homology search. Moreover, MCMDC2 does not seem to be essential for DSB repair, as DSB markers of early and mid recombination nodules, like DMC1 and RPA, are decreased in oocytes. Nevertheless, late recombination nodules, which are positive for MutL homolog 1 (MLH1), do not form in both sexes. The absence of the asynapsis surveillance checkpoint mechanism in Hormad2 deficient ovaries with Mcmdc2 mutant background allowed survival of oocytes. This points into the direction that Mcmdc2 knock­out oocytes get eliminated after prophase I due to failed homologous synapsis. Interestingly, MCMDC2 contains a conserved helicase domain, like the MCM protein family members MCM8 and MCM9. I therefore hyphothesize that Mcmdc2 promotes homolgy search
    corecore