711 research outputs found
The status of Quantum Geometry in the dynamical sector of Loop Quantum Cosmology
This letter is motivated by the recent papers by Dittrich and Thiemann and,
respectively, by Rovelli discussing the status of Quantum Geometry in the
dynamical sector of Loop Quantum Gravity. Since the papers consider model
examples, we also study the issue in the case of an example, namely on the Loop
Quantum Cosmology model of space-isotropic universe. We derive the
Rovelli-Thiemann-Ditrich partial observables corresponding to the quantum
geometry operators of LQC in both Hilbert spaces: the kinematical one and,
respectively, the physical Hilbert space of solutions to the quantum
constraints. We find, that Quantum Geometry can be used to characterize the
physical solutions, and the operators of quantum geometry preserve many of
their kinematical properties.Comment: Latex, 12 page
Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity
Fast inhibitory signalling in the mammalian brain is mediated by gamma-aminobutyric acid type A receptors (GABAARs), which are targets for anti-epileptic therapy such as benzodiazepines. GABAARs undergo tightly regulated trafficking processes that are essential for maintenance and physiological modulation of inhibitory strength. The trafficking of GABAARs to and from the membrane is altered during prolonged seizures such as in Status Epilepticus (SE) and has been suggested to contribute to benzodiazepine pharmacoresistance in patients with SE. However, the intracellular signalling mechanisms that cause this modification in GABAAR trafficking remain poorly understood. In this study, we investigate the surface stability of GABAARs during SE utilizing the low Mg2+ model in hippocampal rat neurons. Live-cell imaging of pHluorin (SEP)-tagged α2 subunit containing GABAARs during low Mg2+ conditions reveals that the somatic surface receptor pool undergoes down-regulation dependent on N-methyl-D-aspartate receptor (NMDAR) activity. Analysis of the intracellular Ca2+ signal during low Mg2+ using the Ca2+-indicator Fluo4 shows that this reduction of surface GABAARs correlates well with the timeline of intracellular Ca2+ changes. Furthermore, we show that the activation of the phosphatase calcineurin was required for the decrease in surface GABAARs in neurons undergoing epileptiform activity. These results indicate that somatic modulation of GABAAR trafficking during epileptiform activity in vitro is mediated by calcineurin activation which is linked to changes in intracellular Ca2+ concentrations. These mechanisms could account for benzodiazepine pharmacoresistance and the maintenance of recurrent seizure activity, and reveal potential novel targets for the treatment of SE
Non-singular Universes a la Palatini
It has recently been shown that f(R) theories formulated in the Palatini
variational formalism are able to avoid the big bang singularity yielding
instead a bouncing solution. The mechanism responsible for this behavior is
similar to that observed in the effective dynamics of loop quantum cosmology
and an f(R) theory exactly reproducing that dynamics has been found. I will
show here that considering more general actions, with quadratic contributions
of the Ricci tensor, results in a much richer phenomenology that yields
bouncing solutions even in anisotropic (Bianchi I) scenarios. Some implications
of these results are discussed.Comment: 4 pages, no figures. Contribution to the Spanish Relativity Meeting
(ERE2010), 6-10 Sept. Granada, Spai
Price dispersion: the case of pasta
Scopo della ricerca è indagare la possibilità di utilizzare scanner data sugli acquisti di pasta per costruire indici dei prezzi spaziali bilaterali e multilaterali utilizzando un approccio binario nella loro costruzione.The aim of our research is to explore the possibility of utilizing scanner data on
pasta purchases to build bilateral and multilateral spatial price indexes, taking a
binary approach in the latter.1
Pasta plays a major role in the Italian diet. Historically, pasta consumption was
mainly concentrated in the Southern regions of the country but today pasta is perhaps
the product most representative of the eating habits of the Italians. The range
of pasta producers runs from firms of longstanding tradition (some of them mainly
directed towards local markets, such as Mastromauro in Puglia) to well known
international brands (such as Barilla and De Cecco).
The marked increase in pasta prices over the last two years has aroused great
interest, but with little focus on spatial price diversity.
This study stems from the availability of an extremely detailed panel dataset
(Nielsen data) on values and quantities of pasta purchased. This data was produced
by the use of bar-code scanning at retail outlets and thus includes information which
provides weights at an elementary level. The use of scanner data to construct price
indexes is not new in literature and there is a widespread consensus on the advantages
of this approach in achieving more representative indexes. Average prices (unit
values) show a marked spatial price variability: even when only considering the five
bestselling products, regional prices vary greatly.
The paper is set out as follows: Sect. 2 provides a description of the pasta scanner
dataset and briefly looks for price variability; in Sect. 3 the requirements of comparability
and representativity in the case of pasta are discussed; Sect. 4 deals with
the methods and formulas chosen to obtain indexes for the regional comparisons of prices; Sect. 5 shows empirical results; in Sect. 6 a brief conclusion and suggestions
for future work are given
Classical Setting and Effective Dynamics for Spinfoam Cosmology
We explore how to extract effective dynamics from loop quantum gravity and
spinfoams truncated to a finite fixed graph, with the hope of modeling
symmetry-reduced gravitational systems. We particularize our study to the
2-vertex graph with N links. We describe the canonical data using the recent
formulation of the phase space in terms of spinors, and implement a
symmetry-reduction to the homogeneous and isotropic sector. From the canonical
point of view, we construct a consistent Hamiltonian for the model and discuss
its relation with Friedmann-Robertson-Walker cosmologies. Then, we analyze the
dynamics from the spinfoam approach. We compute exactly the transition
amplitude between initial and final coherent spin networks states with support
on the 2-vertex graph, for the choice of the simplest two-complex (with a
single space-time vertex). The transition amplitude verifies an exact
differential equation that agrees with the Hamiltonian constructed previously.
Thus, in our simple setting we clarify the link between the canonical and the
covariant formalisms.Comment: 38 pages, v2: Link with discretized loop quantum gravity made
explicit and emphasize
Quantum constraints, Dirac observables and evolution: group averaging versus Schroedinger picture in LQC
A general quantum constraint of the form (realized in particular in Loop Quantum Cosmology models) is
studied. Group Averaging is applied to define the Hilbert space of solutions
and the relational Dirac observables. Two cases are considered. In the first
case, the spectrum of the operator is assumed to be
discrete. The quantum theory defined by the constraint takes the form of a
Schroedinger-like quantum mechanics with a generalized Hamiltonian
. In the second case, the spectrum is absolutely continuous
and some peculiar asymptotic properties of the eigenfunctions are assumed. The
resulting Hilbert space and the dynamics are characterized by a continuous
family of the Schroedinger-like quantum theories. However, the relational
observables mix different members of the family. Our assumptions are motivated
by new Loop Quantum Cosmology models of quantum FRW spacetime. The two cases
considered in the paper correspond to the negative and, respectively, positive
cosmological constant. Our results should be also applicable in many other
general relativistic contexts.Comment: RevTex4, 32 page
Numerical loop quantum cosmology: an overview
A brief review of various numerical techniques used in loop quantum cosmology
and results is presented. These include the way extensive numerical simulations
shed insights on the resolution of classical singularities, resulting in the
key prediction of the bounce at the Planck scale in different models, and the
numerical methods used to analyze the properties of the quantum difference
operator and the von Neumann stability issues. Using the quantization of a
massless scalar field in an isotropic spacetime as a template, an attempt is
made to highlight the complementarity of different methods to gain
understanding of the new physics emerging from the quantum theory. Open
directions which need to be explored with more refined numerical methods are
discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and
Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
A Bell Inequality Analog in Quantum Measure Theory
One obtains Bell's inequalities if one posits a hypothetical joint
probability distribution, or {\it measure}, whose marginals yield the
probabilities produced by the spin measurements in question. The existence of a
joint measure is in turn equivalent to a certain causality condition known as
``screening off''. We show that if one assumes, more generally, a joint {\it
quantal measure}, or ``decoherence functional'', one obtains instead an
analogous inequality weaker by a factor of . The proof of this
``Tsirel'son inequality'' is geometrical and rests on the possibility of
associating a Hilbert space to any strongly positive quantal measure. These
results lead both to a {\it question}: ``Does a joint measure follow from some
quantal analog of `screening off'?'', and to the {\it observation} that
non-contextual hidden variables are viable in histories-based quantum
mechanics, even if they are excluded classically.Comment: 38 pages, TeX. Several changes and added comments to bring out the
meaning more clearly. Minor rewording and extra acknowledgements, now closer
to published versio
Vitamin D and subsequent all-age and premature mortality: a systematic review
<br>Background:
All-cause mortality in the population < 65 years is 30% higher in Glasgow than in equally deprived Liverpool and Manchester. We investigated a hypothesis that low vitamin D in this population may be associated with premature mortality via a systematic review and meta-analysis.</br>
<br>Methods:
Medline, EMBASE, Web of Science, the Cochrane Library and grey literature sources were searched until February 2012 for relevant studies. Summary statistics were combined in an age-stratified meta-analysis.</br>
<br>Results:
Nine studies were included in the meta-analysis, representing 24,297 participants, 5,324 of whom died during follow-up. The pooled hazard ratio for low compared to high vitamin D demonstrated a significant inverse association (HR 1.19, 95% CI 1.12-1.27) between vitamin D levels and all-cause mortality after adjustment for available confounders. In an age-stratified meta-analysis, the hazard ratio for older participants was 1.25 (95% CI 1.14-1.36) and for younger participants 1.12 (95% CI 1.01-1.24).</br>
<br>Conclusions:
Low vitamin D status is inversely associated with all-cause mortality but the risk is higher amongst older individuals and the relationship is prone to residual confounding. Further studies investigating the association between vitamin D deficiency and all-cause mortality in younger adults with adjustment for all important confounders (or using randomised trials of supplementation) are required to clarify this relationship.</br>
Lattice loop quantum cosmology: scalar perturbations
We study the scalar modes of linear perturbations in loop quantum cosmology.
This is done on a lattice where each cell is taken to be homogeneous and
isotropic and can be quantized via standard homogeneous loop quantum cosmology
techniques. The appropriate interactions between nearby cells are included in
the Hamiltonian in order to obtain the correct physics. It is shown that the
quantum theory is anomaly-free: the scalar and diffeomorphism constraint
operators weakly commute with the Hamiltonian. Finally, the effective theory
encoding the leading order quantum gravity corrections is derived and is shown
to give the same holonomy-corrected effective equations that have been obtained
in previous studies.Comment: 32 pages, v2: Minor change
- …