Abstract

This letter is motivated by the recent papers by Dittrich and Thiemann and, respectively, by Rovelli discussing the status of Quantum Geometry in the dynamical sector of Loop Quantum Gravity. Since the papers consider model examples, we also study the issue in the case of an example, namely on the Loop Quantum Cosmology model of space-isotropic universe. We derive the Rovelli-Thiemann-Ditrich partial observables corresponding to the quantum geometry operators of LQC in both Hilbert spaces: the kinematical one and, respectively, the physical Hilbert space of solutions to the quantum constraints. We find, that Quantum Geometry can be used to characterize the physical solutions, and the operators of quantum geometry preserve many of their kinematical properties.Comment: Latex, 12 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019