121 research outputs found

    Our Health:Exploring interdisciplinarity and community-based participatory research in a higher education science shop

    Get PDF
    This paper presents a qualitative case study of the experiences of student and community partners involved in collaborative health research in the context of an extra-curricular higher education science shop: Our Health. Our Health community partners set research questions around health and well-being, and conduct research with interdisciplinary groups of students using a community-based participatory research model. Our case study explores the benefits and challenges that this approach raises for students and community partners as they navigate the complexities of stepping beyond disciplinary boundaries and relationships to develop new research insights and methodologies. This qualitative case study draws on: grounded theory to analyse online focus groups with participating undergraduate students and community partners; semi-structured interviews with graduate students and key university staff members; and online project meetings. For the latter, we used non-participant observation to observe community members and students at work in online meetings, co-creating evolving knowledge around the lived experiences of health issues. Through these methods, we developed a deeper understanding of the relational modes of community–student collaboration in community-based participatory research. Our findings demonstrate the key role played by interdisciplinarity in the context of a community-based participatory research approach in enabling students and community partners to develop their intrapersonal skills, health research skills and knowledge integration skills, while strengthening connections between the academy and wider communities

    Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei

    Get PDF
    African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimise transmission and to prevent uncontrolled parasite multiplication overwhelming the host.In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signalling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed

    Detection of Ser/Thr protein phosphatases in Neurospora crassa

    Get PDF
    Protein phosphorylation is a frequent posttranslational modification regulating cellular processes in eukaryotes. The phosphate content of a protein is determined by the conflicting activities of protein kinases and phosphatases. Protein phosphatases were divided into Ser/Thr and Tyr specific groups, depending on the phosphorylated residue in the substrate molecules. The former group was further classified based on enzymatic criteria (reviewed in Cohen 1989 Ann. Rev. Biochem. 58:453-508). Protein phosphatase 1 (PP1) is inhibited by two heat stable proteins termed inhibitor-1 and -2. Protein phosphatase 2A is inhibited by nanomolar concentration of the tumor promoter okadaic acid. Protein phosphatase 2B (PP2B) - also called calcineurin - is stimulated by Ca-calmodulin, and protein phosphatase 2C (PP2C) is a Mg2+ dependent enzyme. Molecular cloning of the catalytic subunits revealed that PP1-PP2A-PP2B consist of a highly conserved superfamily of proteins

    Ragweed Subpollen Particles of Respirable Size Activate Human Dendritic Cells

    Get PDF
    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-a, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naı¨ve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3+ pan-T cells resulted in increased secretion of IFN-c and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL- 4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs’ NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins

    Independent Pathways Can Transduce the Life-Cycle Differentiation Signal in Trypanosoma brucei

    Get PDF
    African trypanosomes cause disease in humans and livestock, generating significant health and welfare problems throughout sub-Saharan Africa. When ingested in a tsetse fly bloodmeal, trypanosomes must detect their new environment and initiate the developmental responses that ensure transmission. The best-established environmental signal is citrate/cis aconitate (CCA), this being transmitted through a protein phosphorylation cascade involving two phosphatases: one that inhibits differentiation (TbPTP1) and one that activates differentiation (TbPIP39). Other cues have been also proposed (mild acid, trypsin exposure, glucose depletion) but their physiological relevance and relationship to TbPTP1/TbPIP39 signalling is unknown. Here we demonstrate that mild acid and CCA operate through TbPIP39 phosphorylation, whereas trypsin attack of the parasite surface uses an alternative pathway that is dispensable in tsetse flies. Surprisingly, glucose depletion is not an important signal. Mechanistic analysis through biophysical methods suggests that citrate promotes differentiation by causing TbPTP1 and TbPIP39 to interact

    Positional dynamics and glycosomal recruitment of developmental regulators during trypanosome differentiation

    Get PDF
    African trypanosomes are parasites of sub-Saharan Africa responsible for both human and animal disease. The parasites are transmitted by tsetse flies, and completion of their life cycle involves progression through several development steps. The initiation of differentiation between blood and tsetse fly forms is signaled by a phosphatase cascade, ultimately trafficked into peroxisome-related organelles called glycosomes that are unique to this group of organisms. Glycosomes undergo substantial remodeling of their composition and function during the differentiation step, but how this is regulated is not understood. Here we identify a cytological site where the signaling molecules controlling differentiation converge before the dispersal of one of them into glycosomes. In combination, the study provides the first insight into the spatial coordination of signaling pathway components in trypanosomes as they undergo cell-type differentiation.Glycosomes are peroxisome-related organelles that compartmentalize the glycolytic enzymes in kinetoplastid parasites. These organelles are developmentally regulated in their number and composition, allowing metabolic adaptation to the parasite’s needs in the blood of mammalian hosts or within their arthropod vector. A protein phosphatase cascade regulates differentiation between parasite developmental forms, comprising a tyrosine phosphatase, Trypanosoma brucei PTP1 (TbPTP1), which dephosphorylates and inhibits a serine threonine phosphatase, TbPIP39, which promotes differentiation. When TbPTP1 is inactivated, TbPIP39 is activated and during differentiation becomes located in glycosomes. Here we have tracked TbPIP39 recruitment to glycosomes during differentiation from bloodstream “stumpy” forms to procyclic forms. Detailed microscopy and live-cell imaging during the synchronous transition between life cycle stages revealed that in stumpy forms, TbPIP39 is located at a periflagellar pocket site closely associated with TbVAP, which defines the flagellar pocket endoplasmic reticulum. TbPTP1 is also located at the same site in stumpy forms, as is REG9.1, a regulator of stumpy-enriched mRNAs. This site provides a molecular node for the interaction between TbPTP1 and TbPIP39. Within 30 min of the initiation of differentiation, TbPIP39 relocates to glycosomes, whereas TbPTP1 disperses to the cytosol. Overall, the study identifies a “stumpy regulatory nexus” (STuRN) that coordinates the molecular components of life cycle signaling and glycosomal development during transmission of Trypanosoma brucei

    Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids

    Get PDF
    Kinetoplastea such as trypanosomatid parasites contain specialized peroxisomes that uniquely contain enzymes of the glycolytic pathway and other parts of intermediary metabolism and hence are called glycosomes. Their specific enzyme content can vary strongly, quantitatively and qualitatively, between different species and during the parasites' life cycle. The correct sequestering of enzymes has great importance for the regulation of the trypanosomatids' metabolism and can, dependent on environmental conditions, even be essential. Glycosomes also play a pivotal role in life-cycle regulation of Trypanosome brucei, as the translocation of a protein phosphatase from the cytosol forms part of a crucial developmental control switch. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative for unique forms of activity regulation, whereas many kinetic activity regulation mechanisms common for glycolytic enzymes are absent in these organisms. Glycosome turnover occurs by autophagic degradation of redundant organelles and assembly of new ones. This may provide the trypanosomatids with a manner to rapidly and efficiently adapt their metabolism to the sudden, major nutritional changes often encountered during the life cycle. This could also have helped facilitating successful adaptation of kinetoplastids, at multiple occasions during evolution, to their parasitic life style

    A conserved trypanosomatid differentiation regulator controls substrate attachment and morphological development in Trypanosoma congolense

    Get PDF
    Trypanosomatid parasites undergo developmental regulation to adapt to the different environments encountered during their life cycle. In Trypanosoma brucei, a genome wide selectional screen previously identified a regulator of the protein family ESAG9, which is highly expressed in stumpy forms, a morphologically distinct bloodstream stage adapted for tsetse transmission. This regulator, TbREG9.1, has an orthologue in Trypanosoma congolense, despite the absence of a stumpy morphotype in that parasite species, which is an important cause of livestock trypanosomosis. RNAi mediated gene silencing of TcREG9.1 in Trypanosoma congolense caused a loss of attachment of the parasites to a surface substrate in vitro, a key feature of the biology of these parasites that is distinct from T. brucei. This detachment was phenocopied by treatment of the parasites with a phosphodiesterase inhibitor, which also promotes detachment in the insect trypanosomatid Crithidia fasciculata. RNAseq analysis revealed that TcREG9.1 silencing caused the upregulation of mRNAs for several classes of surface molecules, including transferrin receptor-like molecules, immunoreactive proteins in experimental bovine infections, and molecules related to those associated with stumpy development in T. brucei. Depletion of TcREG9.1 in vivo also generated an enhanced level of parasites in the blood circulation consistent with reduced parasite attachment to the microvasculature. The morphological progression to insect forms of the parasite was also perturbed. We propose a model whereby TcREG9.1 acts as a regulator of attachment and development, with detached parasites being adapted for transmission

    The chaperone protein clusterin may serve as a cerebrospinal fluid biomarker for chronic spinal cord disorders in the dog

    Get PDF
    Chronic spinal cord dysfunction occurs in dogs as a consequence of diverse aetiologies, including long-standing spinal cord compression and insidious neurodegenerative conditions. One such neurodegenerative condition is canine degenerative myelopathy (DM), which clinically is a challenge to differentiate from other chronic spinal cord conditions. Although the clinical diagnosis of DM can be strengthened by the identification of the Sod1 mutations that are observed in affected dogs, genetic analysis alone is insufficient to provide a definitive diagnosis. There is a requirement to identify biomarkers that can differentiate conditions with a similar clinical presentation, thus facilitating patient diagnostic and management strategies. A comparison of the cerebrospinal fluid (CSF) protein gel electrophoresis profile between idiopathic epilepsy (IE) and DM identified a protein band that was more prominent in DM. This band was subsequently found to contain a multifunctional protein clusterin (apolipoprotein J) that is protective against endoplasmic reticulum (ER) stress-mediated apoptosis, oxidative stress, and also serves as an extracellular chaperone influencing protein aggregation. Western blot analysis of CSF clusterin confirmed elevated levels in DM compared to IE (p < 0.05). Analysis of spinal cord tissue from DM and control material found that clusterin expression was evident in neurons and that the clusterin mRNA levels from tissue extracts were elevated in DM compared to the control. The plasma clusterin levels was comparable between these groups. However, a comparison of clusterin CSF levels in a number of neurological conditions found that clusterin was elevated in both DM and chronic intervertebral disc disease (cIVDD) but not in meningoencephalitis and IE. These findings indicate that clusterin may potentially serve as a marker for chronic spinal cord disease in the dog; however, additional markers are required to differentiate DM from a concurrent condition such as cIVDD
    corecore