130 research outputs found

    Translation from Classical Two-Way Automata to Pebble Two-Way Automata

    Get PDF
    We study the relation between the standard two-way automata and more powerful devices, namely, two-way finite automata with an additional "pebble" movable along the input tape. Similarly as in the case of the classical two-way machines, it is not known whether there exists a polynomial trade-off, in the number of states, between the nondeterministic and deterministic pebble two-way automata. However, we show that these two machine models are not independent: if there exists a polynomial trade-off for the classical two-way automata, then there must also exist a polynomial trade-off for the pebble two-way automata. Thus, we have an upward collapse (or a downward separation) from the classical two-way automata to more powerful pebble automata, still staying within the class of regular languages. The same upward collapse holds for complementation of nondeterministic two-way machines. These results are obtained by showing that each pebble machine can be, by using suitable inputs, simulated by a classical two-way automaton with a linear number of states (and vice versa), despite the existing exponential blow-up between the classical and pebble two-way machines

    Quantum computation with devices whose contents are never read

    Full text link
    In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to be solvable by these enhanced automata.Comment: 32 pages, a preliminary version of this work was presented in the 9th International Conference on Unconventional Computation (UC2010

    Probing the accelerating Universe with radio weak lensing in the JVLA Sky Survey

    Get PDF
    We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. We highlight the potential advantages and unique aspects of performing weak lensing in the radio band. In particular, the inclusion of continuum polarisation information can greatly reduce noise in weak lensing reconstructions and can also remove the effects of intrinsic galaxy alignments, the key astrophysical systematic effect that limits weak lensing at all wavelengths. We identify a VLASS "deep fields" program (total area ~10-20 square degs), to be conducted at L-band and with high-resolution (A-array configuration), as the optimal survey strategy from the point of view of weak lensing science. Such a survey will build on the unique strengths of the JVLA and will remain unsurpassed in terms of its combination of resolution and sensitivity until the advent of the Square Kilometre Array. We identify the best fields on the JVLA-accessible sky from the point of view of overlapping with existing deep optical and near infra-red data which will provide crucial redshift information and facilitate a host of additional compelling multi-wavelength science.Comment: Submitted in response to NRAO's recent call for community white papers on the VLA Sky Survey (VLASS

    Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation

    Get PDF
    We carry out the holographic renormalization of Einstein-Maxwell theory with curvature-squared corrections. In particular, we demonstrate how to construct the generalized Gibbons-Hawking surface term needed to ensure a perturbatively well-defined variational principle. This treatment ensures the absence of ghost degrees of freedom at the linearized perturbative order in the higher-derivative corrections. We use the holographically renormalized action to study the thermodynamics of R-charged black holes with higher derivatives and to investigate their mass to charge ratio in the extremal limit. In five dimensions, there seems to be a connection between the sign of the higher derivative couplings required to satisfy the weak gravity conjecture and that violating the shear viscosity to entropy bound. This is in turn related to possible constraints on the central charges of the dual CFT, in particular to the sign of c-a.Comment: 30 pages. v2: references added, some equations simplifie

    Generating Temperature Flow for eta/s with Higher Derivatives: From Lifshitz to AdS

    Full text link
    We consider charged dilatonic black branes in AdS_5 and examine the effects of perturbative higher derivative corrections on the ratio of shear viscosity to entropy density eta/s of the dual plasma. The structure of eta/s is controlled by the relative hierarchy between the two scales in the plasma, the temperature and the chemical potential. In this model the background near-horizon geometry interpolates between a Lifshitz-like brane at low temperature, and an AdS brane at high temperatures -- with AdS asymptotics in both cases. As a result, in this construction the viscosity to entropy ratio flows as a function of temperature, from a value in the IR which is sensitive to the dynamical exponent z, to the simple result expected for an AdS brane in the UV. Coupling the scalar directly to the higher derivative terms generates additional temperature dependence, and leads to a particularly interesting structure for eta/s in the IR.Comment: Plots and references added. Journal version of the pape

    On the Temperature Dependence of the Shear Viscosity and Holography

    Get PDF
    We examine the structure of the shear viscosity to entropy density ratio eta/s in holographic theories of gravity coupled to a scalar field, in the presence of higher derivative corrections. Thanks to a non-trivial scalar field profile, eta/s in this setup generically runs as a function of temperature. In particular, its temperature behavior is dictated by the shape of the scalar potential and of the scalar couplings to the higher derivative terms. We consider a number of dilatonic setups, but focus mostly on phenomenological models that are QCD-like. We determine the geometric conditions needed to identify local and global minima for eta/s as a function of temperature, which translate to restrictions on the signs and ranges of the higher derivative couplings. Finally, such restrictions lead to an holographic argument for the existence of a global minimum for eta/s in these models, at or above the deconfinement transition.Comment: references adde

    On N = 2 Truncations of IIB on T^{1,1}

    Get PDF
    We study the N=4 gauged supergravity theory which arises from the consistent truncation of IIB supergravity on the coset T^{1,1}. We analyze three N=2 subsectors and in particular we clarify the relationship between true superpotentials for gauged supergravity and certain fake superpotentials which have been widely used in the literature. We derive a superpotential for the general reduction of type I supergravity on T^{1,1} and this together with a certain solution generating symmetry is tantamount to a superpotential for the baryonic branch of the Klebanov-Strassler solution.Comment: 32 pages, v2:references adde

    Life Quality Impairment Caused by Hookworm-Related Cutaneous Larva Migrans in Resource-Poor Communities in Manaus, Brazil

    Get PDF
    Hookworm-related cutaneous larva migrans (CLM) is a parasitic skin disease common in developing countries with hot climates. In resource-poor settings, CLM is associated with considerable morbidity. The disease is caused by animal hookworm larvae that penetrate the skin and migrate aimlessly in the epidermis as they cannot penetrate the basal membrane. Particularly in the rainy season, the intensity of infection is high with up to 40 larval tracks in an affected individual. Tracks are very itchy and are surrounded by a significant inflammation of the skin. Bacterial superinfection is common and intensifies the inflammation. The psychosocial consequences caused by CLM have never been investigated. We showed that CLM causes skin disease-associated life quality impairment in 91 patients with CLM. Skin disease-associated life quality was significantly impaired. The degree of impairment correlated to the intensity of infection and the number of body areas affected. After treatment with ivermectin, life quality was rapidly restored

    Allergic diseases in the elderly

    Get PDF
    Demographic distribution of the population is progressively changing with the proportion of elderly persons increasing in most societies. This entails that there is a need to evaluate the impact of common diseases, such as asthma and other allergic conditions, in this age segment. Frailty, comorbidities and polymedication are some of the factors that condition management in geriatric patients. The objective of this review is to highlight the characteristics of allergic diseases in older age groups, from the influence of immunosenescence, to particular clinical implications and management issues, such as drug interactions or age-related side effects
    corecore