87 research outputs found

    Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism

    Get PDF
    The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4+ assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Response of plant communities to climate change during the late Holocene: palaeoecological insights from peatlands in the Alaskan Arctic

    No full text
    High-resolution plant macrofossil records were examined alongside pollen, micro- and macro-charcoal, and testate amoeba data to elucidate the dynamics of two permafrost peatlands in the northern foothills of the Brooks Range, Alaskan Arctic. The vegetation dynamics of these two peatlands were driven by autogenic processes reflecting the development trajectory of the peatlands towards ombrotrophic status, and allogenic climate change. We observe an increase in shrub pollen and macrofossils (e.g. Ericaceae, Betula nana) during two Late Holocene warm episodes and in recent decades. Pollen data suggest that regional forest cover also responded to temperature increase since ca. 1950 CE. An increase of Picea pollen (up to 13%) in the upper part of peat profile is probably associated with long distance pollen transport from populations of Picea mariana and Picea glauca located at the southern foothills of the Brooks Range. Relatively small amount of micro- and macrocharcoal in the two profiles indicates little fire activity around the sampling sites over the last ca. 2000 years, which is in agreement with regional findings. The lack of surface and groundwater influence under prolonged warmer/drier condition can allow Sphagnum to expand in Arctic peatlands. Cold climatic conditions might have been detrimental to Sphagnum populations, that were replaced by Carex spp. and other vascular plants owing to wetter conditions in the peatland

    Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves

    No full text
    Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long-term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low-mass antioxidants, ROS-scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes

    Maternal obesity and its relationship with spontaneous and oxytocin-induced contractility of human myometrium in vitro

    No full text
    Maternal obesity is associated with increased rates of labor induction, dysfunctional labor requiring intrapartum cesarean delivery, and postpartum hemorrhage, implying that maternal obesity has an inhibitory effect on myometrial function. and its ability to respond to oxytocin. This study aimed to use an in vitro model to investigate the relationship between maternal body mass index (BMI) and the ability Of myometrium to contract spontaneously and in response to oxytocin, Linear mixed effects regression modeling was applied to contractile data from 609 strips from 85 women. No correlation was found between maternal BMI and any indices of spontaneous myometrial activity. A single addition of oxytocin increased contractility, however, this was not related to maternal BMI. Similarly, oxytocin concentration-response curves were unrelated to BMI. Overall, the results from this in vitro study suggest that the observed implications of obesity on parturition in vivo cannot be explained by a direct effect on myometrial contractile mechanisms per se
    corecore