33 research outputs found

    The influence of distal screw length on the primary stability of volar plate osteosynthesis-a biomechanical study

    Get PDF
    Background: Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. The aim of this study was to compare 75 to 100 % distal screw lengths in VLPO. Methods: A biomechanical study was conducted on 11 paired fresh-frozen radii. HRpQCT scans were performed to assess bone mineral density (BMD) and bone mineral content (BMC). The specimens were randomized pair-wise into two groups: 100 % (group A) and 75 % (group B) unicortical distal screw lengths. A validated fracture model for extra-articular distal radius fractures (AO-23 A3) was used. Polyaxial volar locking plates were mounted, and distal screws was inserted using a drill guide block. For group A, the distal screw tips were intended to be flush or just short of the dorsal cortex. In group B, a target screw length of 75 % was calculated. The specimens were tested to failure using a displacement-controlled axial compression test. Primary biomechanical stability was assessed by stiffness, elastic limit, and maximum force as well as with residual tilt, which quantified plastic deformation. Results: Nine specimens were tested successfully. BMD and BMC did not differ between the two groups. The mean distal screw length of group A was 21.7 +/- 2.6 mm (range: 16 to 26 mm),for group B 16.9 +/- 1.9 mm (range: 12 to 20 mm). Distal screws in group B were on average 5.6 +/- 0.9 mm (range: 3 to 7 mm) shorter than measured. No significant differences were found for stiffness (706 +/- 103 N/mm vs. 660 +/- 124 N/mm),elastic limit (177 +/- 25 N vs. 167 +/- 36 N),maximum force (493 +/- 139 N vs. 471 +/- 149 N),or residual tilt (7.3 degrees +/- 0.7 degrees vs. 7.1 degrees +/- 1.3 degrees). Conclusion: The 75 % distal screw length in VLPO provides similar primary stability to 100 % unicortical screw length. This study, for the first time, provides the biomechanical basis to choose distal screws significantly shorter then measured

    The influence of distal screw length on the primary stability of volar plate osteosynthesis-a biomechanical study

    Get PDF
    Background: Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. The aim of this study was to compare 75 to 100 % distal screw lengths in VLPO. Methods: A biomechanical study was conducted on 11 paired fresh-frozen radii. HRpQCT scans were performed to assess bone mineral density (BMD) and bone mineral content (BMC). The specimens were randomized pair-wise into two groups: 100 % (group A) and 75 % (group B) unicortical distal screw lengths. A validated fracture model for extra-articular distal radius fractures (AO-23 A3) was used. Polyaxial volar locking plates were mounted, and distal screws was inserted using a drill guide block. For group A, the distal screw tips were intended to be flush or just short of the dorsal cortex. In group B, a target screw length of 75 % was calculated. The specimens were tested to failure using a displacement-controlled axial compression test. Primary biomechanical stability was assessed by stiffness, elastic limit, and maximum force as well as with residual tilt, which quantified plastic deformation. Results: Nine specimens were tested successfully. BMD and BMC did not differ between the two groups. The mean distal screw length of group A was 21.7 +/- 2.6 mm (range: 16 to 26 mm),for group B 16.9 +/- 1.9 mm (range: 12 to 20 mm). Distal screws in group B were on average 5.6 +/- 0.9 mm (range: 3 to 7 mm) shorter than measured. No significant differences were found for stiffness (706 +/- 103 N/mm vs. 660 +/- 124 N/mm),elastic limit (177 +/- 25 N vs. 167 +/- 36 N),maximum force (493 +/- 139 N vs. 471 +/- 149 N),or residual tilt (7.3 degrees +/- 0.7 degrees vs. 7.1 degrees +/- 1.3 degrees). Conclusion: The 75 % distal screw length in VLPO provides similar primary stability to 100 % unicortical screw length. This study, for the first time, provides the biomechanical basis to choose distal screws significantly shorter then measured

    Analysis of the three-dimensional anatomical variance of the distal radius using 3D shape models

    Get PDF
    BACKGROUND: Various medical fields rely on detailed anatomical knowledge of the distal radius. Current studies are limited to two-dimensional analysis and biased by varying measurement locations. The aims were to 1) generate 3D shape models of the distal radius and investigate variations in the 3D shape, 2) generate and assess morphometrics in standardized cut planes, and 3) test the model's classification accuracy. METHODS: The local radiographic database was screened for CT-scans of intact radii. 1) The data sets were segmented and 3D surface models generated. Statistical 3D shape models were computed (overall, gender and side separate) and the 3D shape variation assessed by evaluating the number of modes. 2) Anatomical landmarks were assigned and used to define three standardized cross-sectional cut planes perpendicular to the main axis. Cut planes were generated for the mean shape models and each individual radius. For each cut plane, the following morphometric parameters were calculated and compared: maximum width and depth, perimeter and area. 3) The overall shape model was utilized to evaluate the predictive value (leave one out cross validation) for gender and side identification within the study population. RESULTS: Eighty-six radii (45 left, 44% female, 40 +/- 18 years) were included. 1) Overall, side and gender specific statistical 3D models were successfully generated. The first mode explained 37% of the overall variance. Left radii had a higher shape variance (number of modes: 20 female / 23 male) compared to right radii (number of modes: 6 female / 6 male). 2) Standardized cut planes could be defined using anatomical landmarks. All morphometric parameters decreased from distal to proximal. Male radii were larger than female radii with no significant side difference. 3) The overall shape model had a combined median classification probability for side and gender of 80%. CONCLUSIONS: Statistical 3D shape models of the distal radius can be generated using clinical CT-data sets. These models can be used to assess overall bone variance, define and analyze standardized cut-planes, and identify the gender of an unknown sample. These data highlight the potential of shape models to assess the 3D anatomy and anatomical variance of human bones

    Metacarpophalangeal joint loads during bonobo locomotion: model predictions vs. proxies

    Get PDF
    The analysis of internal trabecular and cortical bone has been an informative tool for drawing inferences about behaviour in extant and fossil primate taxa. Within the hand, metacarpal bone architecture has been shown to correlate well with primate locomotion; however, the extent of morphological differences across taxa is unexpectedly small given the variability in hand use. One explanation for this observation is that the activity-related differences in the joint loads acting on the bone are simply smaller than estimated based on commonly used proxies (i.e. external loading and joint posture), which neglect the influence of muscle forces. In this study, experimental data and a musculoskeletal finger model are used to test this hypothesis by comparing differences between climbing and knuckle-walking locomotion of captive bonobos (Pan paniscus) based on (i) joint load magnitude and direction predicted by the models and (ii) proxy estimations. The results showed that the activity-related differences in predicted joint loads are indeed much smaller than the proxies would suggest, with joint load magnitudes being almost identical between the two locomotor modes. Differences in joint load directions were smaller but still evident, indicating that joint load directions might be a more robust indicator of variation in hand use than joint load magnitudes. Overall, this study emphasizes the importance of including muscular forces in the interpretation of skeletal remains and promotes the use of musculoskeletal models for correct functional interpretations

    Signals of locomotion and manipulation in the internal trabecular bone structure of extant hominoids and fossil hominins

    Get PDF
    The enhanced dexterity of the human hand is unique among primates, an ability that is traditionally thought to have evolved in response to tool-related behaviours and a release from the biomechanical constraints of locomotion in our bipedal hominin ancestors. However, recent fossil and archaeological evidence, as well as novel analyses, suggest that dexterity-related morphology and abilities evolved earlier that traditionally thought and that fossil hominins used their hands for locomotion until much later than presumed

    Analisis Pasar Wisata Syariah Di Kota YOGYAKARTA

    Full text link
    This article is the result of research that talks about how the development of the tourism market of sharia in the Yogyakarta City. Sharia travel is a new travel trend worldwide has excellent prospects for development and this concept into new ways to develop tourism in Yogyakarta to uphold the culture and values of Islam. This study seeks to segment the tourism market in the Yogyakarta City and tourist developments seen from indicators sharia destination product and service quality, as well as merumukan attributes that are required in the development of sharia travel and recommends the development of a marketing strategy of sharia in the Yogyakarta City. Descriptive method used to describe the facts about sharia travel market in the Yogyakarta City. The results show that tourists visiting Yogyakarta come from various parts of the archipelago, with demographic and psychographic diverse. Yogyakarta has a great potential to be developed as a tourist destination islamic views of destination product and service quality by adding the necessary attributes and by conducting massive marketing with promotional mix. Keywords: Travel Sharia, Product Specials, Quality of Service, the Yogyakarta Cit

    A computational framework for canonical holistic morphometric analysis of trabecular bone

    Get PDF
    Bone is a remarkable, living tissue that functionally adapts to external loading. Therefore, bone shape and internal structure carry information relevant to many disciplines, including medicine, forensic science, and anthropology. However, morphometric comparisons of homologous regions across different individuals or groups are still challenging. In this study, two methods were combined to quantify such differences: (1) Holistic morphometric analysis (HMA) was used to quantify morphometric values in each bone, (2) which could then be mapped to a volumetric mesh of a canonical bone created by a statistical free-form deformation model (SDM). Required parameters for this canonical holistic morphometric analysis (cHMA) method were identified and the robustness of the method was evaluated. The robustness studies showed that the SDM converged after one to two iterations, had only a marginal bias towards the chosen starting image, and could handle large shape differences seen in bones of different species. Case studies were performed on metacarpal bones and proximal femora of different primate species to confirm prior study results. The differences between species could be visualised and statistically analysed in both case studies. cHMA provides a framework for performing quantitative comparisons of different morphometric quantities across individuals or groups. These comparisons facilitate investigation of the relationship between spatial morphometric variations and function or pathology, or both

    The deep trabecular structure of first metacarpals in extant hominids

    Get PDF
    Objectives: Recent studies have associated subarticular trabecular bone distribution in the extant hominid first metacarpal (Mc1) with observed thumb use, to infer fossil hominin thumb use. Here, we analyze the entire Mc1 to test for interspecific differencesin: (1) the absolute volume of trabecular volume fraction, (2) the distribution ofthe deeper trabecular network, and (3) the distribution of trabeculae in the medullarycavity, especially beneath the Mc1 disto-radial flange. Materials and Methods: Trabecular bone was imaged using micro-computed tomography in a sample of Homo sapiens (n = 11), Pan paniscus (n = 10), Pan troglodytes(n = 11), Gorilla gorilla (n = 10) and Pongo sp., (n = 7). Using Canonical Holistic Morphometric Analysis (cHMA), we tested for interspecific differences in the trabecular bone volume fraction (BV/TV) and its relative distribution (rBV/TV) throughout the Mc1, including within the head, medullary cavity, and base. Results: P. paniscus had the highest, and H. sapiens the lowest, BV/TV relative to other species. rBV/TV distribution statistically distinguished the radial concentrations and lack of medullary trabecular bone in the H. sapiens Mc1 from all other hominids. H. sapiens and, to a lesser extent, G. gorilla also had a significantly higher trabecular volume beneath the disto-radial flange relative to other hominids. Discussion: These results are consistent with differences in observed thumb use in these species and may also reflect systemic differences in bone volume fraction. The trabecular bone extension into the medullary cavity and concentrations beneath the disto-radial flange may represent crucial biomechanical signals that will aid in the inference of fossil hominin thumb use

    Musculoskeletal models of a human and bonobo finger: parameter identification and comparison to in vitro experiments

    Get PDF
    Introduction: Knowledge of internal finger loading during human and non-human primate activities such as tool use or knuckle-walking has become increasingly important to reconstruct the behaviour of fossil hominins based on bone morphology. Musculoskeletal models have proven useful for predicting these internal loads during human activities, but load predictions for non-human primate activities are missing due to a lack of suitable finger models. The main goal of this study was to implement both a human and a representative non-human primate finger model to facilitate comparative studies on metacarpal bone loading. To ensure that the model predictions are sufficiently accurate, the specific goals were: (1) to identify species-specific model parameters based on in vitro measured fingertip forces resulting from single tendon loading and (2) to evaluate the model accuracy of predicted fingertip forces and net metacarpal bone loading in a different loading scenario. Materials & Methods: Three human and one bonobo (Pan paniscus) fingers were tested in vitro using a previously developed experimental setup. The cadaveric fingers were positioned in four static postures and load was applied by attaching weights to the tendons of the finger muscles. For parameter identification, fingertip forces were measured by loading each tendon individually in each posture. For the evaluation of model accuracy, the extrinsic flexor muscles were loaded simultaneously and both the fingertip force and net metacarpal bone force were measured. The finger models were implemented using custom Python scripts. Initial parameters were taken from literature for the human model and own dissection data for the bonobo model. Optimized model parameters were identified by minimizing the error between predicted and experimentally measured fingertip forces. Fingertip forces and net metacarpal bone loading in the combined loading scenario were predicted using the optimized models and the remaining error with respect to the experimental data was evaluated. Results. The parameter identification procedure led to minor model adjustments but considerably reduced the error in the predicted fingertip forces (root mean square error reduced from 0.53/0.69 N to 0.11/0.20 N for the human/bonobo model). Both models remained physiologically plausible after the parameter identification. In the combined loading scenario, fingertip and net metacarpal forces were predicted with average directional errors below 6◦ and magnitude errors below 12%. Conclusions. This study presents the first attempt to implement both a human and nonhuman primate finger model for comparative palaeoanthropological studies. The good agreement between predicted and experimental forces involving the action of extrinsic flexors—which are most relevant for forceful grasping—shows that the models are likely sufficiently accurate for comparisons of internal loads occurring during human and non-human primate manual activities

    Trabecular architecture of the distal femur in extant hominids

    Get PDF
    Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re‐)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter‐ and intra‐specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins
    corecore