8,248 research outputs found

    Model Draft of a Rule 502(d) Order

    Get PDF

    2015 researcher's mini-symposium

    Get PDF
    Postgraduate researchers from the Faculties of Science, Engineering, Medicine & Surgery and Health Sciences gathered for a forum to present their research interests. The symposium was held in the afternoon of 30 January 2015 in the Engineering Lecture Theatre. The symposium promoted multi-disciplinary networking between various university faculties. Participants were invited based on research topic diversity and gender balance.peer-reviewe

    Deep learning

    Get PDF

    Bounds on the Capacity of the Relay Channel with Noncausal State Information at Source

    Full text link
    We consider a three-terminal state-dependent relay channel with the channel state available non-causally at only the source. Such a model may be of interest for node cooperation in the framework of cognition, i.e., collaborative signal transmission involving cognitive and non-cognitive radios. We study the capacity of this communication model. One principal problem in this setup is caused by the relay's not knowing the channel state. In the discrete memoryless (DM) case, we establish lower bounds on channel capacity. For the Gaussian case, we derive lower and upper bounds on the channel capacity. The upper bound is strictly better than the cut-set upper bound. We show that one of the developed lower bounds comes close to the upper bound, asymptotically, for certain ranges of rates.Comment: 5 pages, submitted to 2010 IEEE International Symposium on Information Theor

    ESD Symposium Comittee Overview: Engineering Systems Research and Practice

    Get PDF
    This paper briefly introduces the field of Engineering Systems, and highlights its emergence from engineering practice and academic engineering. This paper was prepared by the ESD Symposium Committee based upon its own discussions, by an analysis of the other Internal Symposium papers, and by interactions with their authors. This paper discusses: a framework for describing the field of engineering systems, and emphasizes a three-dimensional view the challenges emerging in engineering practice that are associated with the design of complex systems the methods that address research and practice problems (most of these methods currently exist, some must be developed) principles and fundamentals of engineering systems "Engineering systems are increasing in size, scope, and complexity as a result of globalization, new technological capabilities, rising consumer expectations, and increasing social requirements. Engineering systems present difficult design problems and require different problem solving frameworks than those of the traditional engineering science paradigm: in particular, a more integrative approach in which engineering systems professionals view technological systems as part of a larger whole. Though engineering systems are very varied, they often display similar behavior. New approaches, frameworks, and theories need to be developed to understand better engineering systems behavior and design.

    Overview

    Get PDF

    Editorial comment

    Get PDF

    Alfonso Valencia

    Get PDF

    Quantifying Information Leaks Using Reliability Analysis

    Get PDF
    acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4We report on our work-in-progress into the use of reliability analysis to quantify information leaks. In recent work we have proposed a software reliability analysis technique that uses symbolic execution and model counting to quantify the probability of reaching designated program states, e.g. assert violations, under uncertainty conditions in the environment. The technique has many applications beyond reliability analysis, ranging from program understanding and debugging to analysis of cyber-physical systems. In this paper we report on a novel application of the technique, namely Quantitative Information Flow analysis (QIF). The goal of QIF is to measure information leakage of a program by using information-theoretic metrics such as Shannon entropy or Renyi entropy. We exploit the model counting engine of the reliability analyzer over symbolic program paths, to compute an upper bound of the maximum leakage over all possible distributions of the confidential data. We have implemented our approach into a prototype tool, called QILURA, and explore its effectiveness on a number of case studie
    corecore