9 research outputs found

    Mendelian Inheritance Pattern and High Mutation Rates of Microsatellite Alleles in the Diatom Pseudo-nitzchia multistriata

    Get PDF
    The diatom Pseudo-nitzschia multistriata exhibits a diplontic life cycle composed of an extensive phase of vegetative cell division and a brief phase of sexual reproduction. To explore genotypic stability, we genotyped seven polymorphic microsatellite loci in 26 monoclonal strains over 3–16 months in a culture maintenance regime. Moreover, to assess inheritance patterns of the microsatellite alleles, we genotyped 246 F1 strains resulting from four mating experiments between parental strains of know genotype. Results generally conformed expectations according to Mendelian inheritance patterns, but deviations were detected indicating mutations during sexual reproduction. A total of forty-two mutations were detected in the clonal cultures over time. Microsatellites with more core-repeats accumulated mutations faster. The mutation rate varied significantly across loci and strains. A binomial mass function and a computer simulation showed that the mutation rate was significantly higher during the first months of culture (μ≈3×10-3 per locus per cell division) and decreased to μ≈1×10-3 in the strains kept for 16 months. Our results suggest that genetic mutations acquired in both the vegetative phase and sexual reproduction add to the allelic diversity of microsatellites, and hence to the genotypic variation present in a natural population

    Dispersal in a changing world: opportunities, insights and challenges

    Get PDF
    Abstract It has been long recognised that dispersal is an important life-history trait that plays a key role in the demography and evolution of populations and species. This then suggests that dispersal play a central role in the response of populations and species to ever-increasing global change, including climate change, habitat loss and fragmentation, and biological invasions. During a symposium held at Lund University (Sweden), the causes and consequences of dispersal were discussed, and here we provide an overview of the talks. As the discussions often gravitated towards the role and our understanding of dispersal in a changing world and given the urgent challenges posed by it, we place this overview in the context of global change. We draw and discuss four conclusions: (i) methodological advances provide opportunities for improved future studies, (ii) dispersal distances can be much greater than previously thought (examples in plants and vertebrates), but also much more restricted (examples in micro-organisms), (iii) dispersal is more dynamic than we often care to admit (e.g. due to individual variation, effects of parasites, variation in life history, developmental and evolutionary responses, community impacts), (iv) using results of dispersal research for detailed prediction of outcomes under global change is currently mostly out of reach – nevertheless, that should not stop us from showing the many negative consequences of global change, and how dispersal is often a limiting factor in adapting to this.This work has been supported by a Linnaeus grant to the Centre for Animal Movement Research (CAnMove) from the Swedish Research Council (349-2007-8690) and Lund University.Peer Reviewe

    Population connectivity, dispersal, and swimming behavior in Daphnia

    No full text
    The water flea Daphnia has the capacity to respond rapidly to environmental stressors, to disperse over large geographical scales, and to preserve its genetic material by forming egg banks in the sediment. Spatial and temporal distributions of D. magna have been extensively studied over the last decades using behavioral or genetic tools, although the correlation between the two has rarely been the focus. In the present study, we therefore investigated the population genetic structure and behavioral response to a lethal threat, ultraviolet radiation (UVR), among individuals from two different water bodies. Our results show two genetic populations with moderate gene flow, highly correlated with geographical location and with inheritable traits through generations. However, despite the strong genetic differences between populations, we show homogeneous refuge demand between populations when exposed to the lethal threat solar UVR

    Description of Limnomonas gen. nov., L. gaiensis sp. nov. and L. spitsbergensis sp. nov. (Chlamydomonadales, Chlorophyta)

    No full text
    Two novel Chlamydomonas-like species, belonging to the Moewusii clade, have been de-scribed. The first species inhabits eutrophic and neutral to basic pH waters in Sweden and England. It is easily recognizable under a light microscope due to its morphology (a small green prolate spheroidal shape with a large and truncated papilla at its anterior end, two equal flagella, a single lateral eyespot, a basal nucleus, and a well-defined pyrenoid) and to its peculiar whole-body pen-dulum movement while resting on surfaces or attached to floating particles. The species occurs as free-living individuals and is able to gather temporarily into groups of individual cells. No particular binding structures or palmelloid cells were observed in cultures. The second species, previously assigned to Chlamydomonas cf. proboscigera, was collected from persistent snow in Svalbard, Norway. Its morphology is revised herein. Using SSU rDNA sequence analyses, these two species formed a well-supported clade. Moreover, ITS-2 secondary structure analyses confirmed sexual incompatibility between these biological species. Considering these results, a new genus Limnomonas and its type species L. gaiensis and L. spitsbergensis are proposed

    Ice nucleation activity and aeolian dispersal success in airborne and aquatic microalgae

    No full text
    Microalgae are common members of the atmospheric microbial assemblages. Diverse airborne microorganisms are known to produce ice nucleation active (INA) compounds, which catalyze cloud and rain formation, and thus alter cloud properties and their own deposition patterns. While the role of INA bacteria and fungi in atmospheric processes receives considerable attention, the numerical abundance and the capacity for ice nucleation in atmospheric microalgae are understudied. We isolated 81 strains of airborne microalgae from snow samples and determined their taxonomy by sequencing their ITS markers, 18S rRNA genes or 23S rRNA genes. We studied ice nucleation activity of airborne isolates, using droplet freezing assays, and their ability to withstand freezing. For comparison, we investigated 32 strains of microalgae from a culture collection, which were isolated from polar and temperate aqueous habitats. We show that ∼17% of airborne isolates, which belonged to taxa Trebouxiphyceae, Chlorophyceae and Stramenopiles, were INA. A large fraction of INA strains (over 40%) had ice nucleation activity at temperatures ≥-6°C. We found that 50% of aquatic microalgae were INA, but the majority were active at temperatures -15°C) and may thus participate in cloud and precipitation formation

    Diverging responses to threats across generations in zooplankton

    No full text
    Our understanding on how organisms evolutionarily cope with simultaneously occurring, multiple threats over generations is still elusive. In a long-term experimental study, we therefore exposed clones of a freshwater cladoceran, Daphnia magna, to threats from predation and ultraviolet radiation (UVR) during three consecutive parthenogenetic generations. We show that Daphnia can adapt to different sets of threats within three generations through modifying morphology, swimming behavior, or life-history traits. When faced with predator cues, D. magna responded with reduced body size, whereas exposure to UVR induced behavioral tolerance when again exposed to this threat. Such UVR-tolerant behavior was initially associated with a reduced clutch size, but Daphnia restored the reproductive output gradually through generations. The findings advance our understanding on how those common invertebrates, with a global distribution, are able to persist and rapidly become successful in a changing environment

    Mercury–Selenium Accumulation Patterns in Muscle Tissue of Two Freshwater Fish Species, Eurasian Perch (Perca fluviatilis) and Vendace (Coregonus albula)

    No full text
    Mercury (Hg) in the form of highly toxic methyl mercury (MeHg) accumulates in aquatic food webs to an extent where it may threaten fish health in many freshwaters. Selenium (Se) mitigates the toxicity of accumulated Hg by forming strong bonds with it, a drawback being diversion of Se from biosynthetic pathways of essential selenoenzymes. We measured Se and Hg in muscle tissue of Eurasian perch (Perca fluviatilis) and vendace (Coregonus albula). For the perch, Se and Hg correlated positively. For the vendace, a positive relationship was seen when the effect of fish size was accounted for. All fish displayed surplus Se (mol Se – mol Hg > 0). For both fish species, the Se molar surplus ((nmol Se – nmol Hg)/g ww) decreased with fish weight. It was higher in the perch than in the vendace and showed the least variation among the small perch (4–34 g). For the large perch (79–434 g), the Se molar surplus decreased with increasing Hg below 0.5 µg Hg but then increased with further Hg increment despite Hg being a negative term in the Se molar surplus. In case the Se molar surplus reflected the weight-specific Se requirement, the latter clearly decreased with increasing fish size for the vendace. This was less clear for the perch because of the strong correlation between Hg and weight. Together, these Se–Hg relationships suggest that Se accumulation was at least partly subject to homeostatic control and responded to the Hg body burden and the Se requirement. Graphical abstract: [Figure not available: see fulltext.

    The potential for dispersal of microalgal resting cysts by migratory birds

    No full text
    Most microalgal species are geographically widespread, but little is known about how they are dispersed. One potential mechanism for long-distance dispersal is through birds, which may transport cells internally (endozoochory) and deposit them during, or in-between, their migratory stopovers. We hypothesize that dinoflagellates, in particular resting stages, can tolerate bird digestion; that bird temperature, acidity, and retention time negatively affect dinoflagellate viability; and that recovered cysts can germinate after passage through the birds’ gut, contributing to species-specific dispersal of the dinoflagellates across scales. Tolerance of two dinoflagellate species (Peridiniopsis borgei, a warm-water species and Apocalathium malmogiense, a cold-water species) to Mallard gut passage was investigated using in vitro experiments simulating the gizzard and caeca conditions. The effect of in vitro digestion and retention time on cell integrity, cell viability, and germination capacity of the dinoflagellate species was examined targeting both their vegetative and resting stages. Resting stages (cysts) of both species were able to survive simulated bird gut passage, even if their survival rate and germination were negatively affected by exposure to acidic condition and bird internal temperature. Cysts of A. malmogiense were more sensitive than P. borgei to treatments and to the presence of digestive enzymes. Vegetative cells did not survive conditions of bird internal temperature and formed pellicle cysts when exposed to gizzard-like acid conditions. We show that dinoflagellate resting cysts serve as dispersal propagules through migratory birds. Assuming a retention time of viable cysts of 2–12 h to duck stomach conditions, cysts could be dispersed 150–800 km and beyond

    First tracking of declining Caspian terns Hydroprogne caspia breeding in the Baltic Sea reveals high migratory dispersion and disjunct annual ranges as obstacles to effective conservation

    No full text
    The conservation of migratory species poses significant challenges that may be countered by detailed knowledge about the sites used by migrants throughout the annual cycle. We present the first GPS-tracking data on the migration of declining Caspian terns Hydroprogne caspia breeding in the Baltic Sea. For 39 Caspian terns from colonies along a latitudinal gradient from 57 to 65°N, we identified key migratory routes, stopovers and wintering areas. In autumn these seabirds migrated using coastal and freshwater stopovers along six routes to reach their wintering areas across the Sahel, the Nile River Basin and the southern Iberian Peninsula. In spring, adults returned to the breeding grounds in the Baltic using a time optimizing strategy by reducing time at stopover by 78%, whereas most subadults remained sedentary and some performed only partial return migrations. Of the stopover sites used in both seasons, 58% are protected and have a reported management plan. Conservation strategies in wintering areas, stopover sites that are not protected or had not been previously recognized, and the inclusion of the species in important migratory flyways across Europe and Africa will be important to prevent further population declines of a species that depends on aquatic habitats
    corecore