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The  diatom  Pseudo-nitzschia  multistriata  exhibits  a  diplontic  life  cycle  composed  of  an  extensive  phase
of vegetative  cell  division  and  a  brief  phase  of  sexual  reproduction.  To  explore  genotypic  stability,  we
genotyped seven  polymorphic  microsatellite  loci  in  26  monoclonal  strains  over  3–16  months  in  a  cul-
ture maintenance  regime.  Moreover,  to  assess  inheritance  patterns  of  the  microsatellite  alleles,  we
genotyped 246  F1  strains  resulting  from  four  mating  experiments  between  parental  strains  of  know
genotype. Results  generally  conformed  expectations  according  to  Mendelian  inheritance  patterns,  but
deviations were  detected  indicating  mutations  during  sexual  reproduction.  A  total  of  forty-two  muta-
tions were  detected  in  the  clonal  cultures  over  time.  Microsatellites  with  more  core-repeats  accumulated
mutations faster.  The  mutation  rate  varied  significantly  across  loci  and  strains.  A  binomial  mass  func-
tion and  a  computer  simulation  showed  that  the  mutation  rate  was  significantly  higher  during  the  first
months of  culture  (�≈3×10-3 per  locus  per  cell  division)  and  decreased  to  �≈1×10-3 in  the  strains  kept
for 16  months.  Our  results  suggest  that  genetic  mutations  acquired  in  both  the  vegetative  phase  and
sexual reproduction  add  to  the  allelic  diversity  of  microsatellites,  and  hence  to  the  genotypic  variation
present in  a  natural  population.
© 2012  Elsevier  GmbH.  All  rights  reserved.
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Introduction

Microsatellites  are  DNA  sequences  composed
of  a core  of one to six nucleotides  that are
highly  repeated in tandem (Li et al. 2002). Such
sequences  exhibit  high  mutation  rates, which have
been  estimated  to be as high as 10−3 and

1Corresponding  author;  fax  +46-0462224536
e-mail  Sylvie.Tesson@biol.lu.se  (S.V.M.  Tesson).

10−4/locus/generation  in humans  (e.g.  Brinkmann
et  al. 1998; Hohoff  et al. 2007), with changes
following  a nearly step-wise mutation model, i.e.
addition/deletion  of one  or more  core repeats
(Hancock  1999;  Kruglyak  et al. 1998;  Ouborg et al.
1999;  Seyfert  et al. 2008).

In recent  years, microsatellite  markers have been
utilized  to assess the genetic structure of pop-
ulations  of marine  diatoms  over different  spatial
(e.g.  Casteleyn  et  al. 2010;  Evans  et al. 2005)

©  2012  Elsevier  GmbH.  All  rights  reserved.
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and temporal (Härnström et al.  2011;  Rynearson
and  Armbrust  2005;  Rynearson et al. 2006)  scales.
High  genetic and genotypic diversity  was found
in  all  species (e.g. Evans  et al. 2005;  Rynearson
and  Armbrust 2004).  In natural  populations  of the
centric  diatom  Ditylum  brightwellii,  up to 94% of
genetically  distinct  strains  were recorded  in a sam-
ple  size  of hundreds of strains  (Rynearson  et al.
2006).  Genetic  diversity  was  high also  during  the
peak  phase of a bloom when  rapid  clonal  propaga-
tion  is supposed  to occur (Rynearson and  Armbrust
2005).

In  unicellular  organisms, such as diatoms,  mitotic
division  prevails, but sexual reproduction  occurs as
well  and has profound  consequences  for their pop-
ulation  dynamics  and genetic  profile  (Halkett  et al.
2005).  In  such organisms,  genetic  changes  can
occur  through the acquisition  of somatic  and mei-
otic  mutations  as well as due  to genetic  remixing
during  the sexual  phase. During clonal  propaga-
tion,  the genetic variation  in the  gene  pool may
reach  equilibrium  between gains  due  to  adaptive
mutations,  gene  flow and selectively  neutral muta-
tions  and losses due  to random genetic drift (De
Meester  et al. 2006; Vanoverbeke  and  De  Meester
2010).  Genetic erosion  and selection  pressure  play
a  role  in the decrease  of genotypic  diversity. To
restore  high genotypic diversity,  sexual  reproduc-
tion  is needed  to induce  genetic segregation  and
genetic  remixing (Bengtsson  2003, Vanoverbeke
and  De Meester  2010).  Hence, genotypic variation
is  enhanced principally  during sexual  reproduction.

Microsatellite  alleles inherit  following  Mendelian
rules,  but departures  from Mendelian  segregation
are  known  to exist  (e.g. Dobrowolski  and  Tommerup
2002;  Reece  et al. 2004).  Such  deviations  can
be  due to the presence of null alleles,  or  to non-
disjunction  at meiosis.  In populations  of diatoms
with  an extensive  phase of vegetative  cell division,
deviations  from Hardy-Weinberg  equilibrium  can
also  occur  because  the population  is not panmic-
tic  (i.e.  it is not randomly  mating). Consequently,
algorithms  that  estimate  the null allele  frequency
cannot  be employed, unless the rate  of inbreeding
(or  selfing)  is known (van  Oosterhout  et al. 2006),
or  when analysing  a generation  that arises from
sexual  reproduction.

Other sources  of microsatellite  genetic varia-
tion  in natural  populations  are new alleles,  which
are  generated  through  random mutations  during
both  the vegetative phase  and the  sexual phase
of  the life  cycle and  can  spread  among  popula-
tions  through gene flow.  It is unclear,  however,
which  of these  two phases  is the principal  source  of
novel  microsatellite  alleles. Even  in higher  plants,  a

group that has been  well-studied  using population
genetic  approaches,  information  on the frequency
of microsatellite  mutations  during  vegetative  growth
is  rare (Cloutier  et al. 2003; Douhovnikoff  and Dodd
2003;  O’Connell  and Ritland 2004).

We  developed  seven microsatellite  markers  to
study  temporal  changes in the population genetic
structure  of the planktonic  diatom Pseudo-nitzschia
multistriata  (Takano)  Takano  (Tesson  et al. 2011).
The  species  can be enticed to  reproduce sexu-
ally  under  controlled  laboratory  conditions, which
means  that  the microsatellite  mutation frequency
over  the sexual phase  of the  life cycle can be anal-
ysed  by genotyping  its F1-offspring.  The species
is  heterothallic,  i.e. only  strains  of opposite mating
types  can engage  in sexual reproduction  (D’Alelio
et  al.  2009a).  In P. multistriata,  sex can be induced
when  cells  have  become  shorter  than  55  �m. The
initial  F1  cells are  distinguishable  from their par-
ents  because  they are markedly longer, namely
between  82  and  72 �m (D’Alelio  et al. 2009a). An
additional  way to distinguish  cells of  the parental
strains  from the F1 cells is by means  of  their inter-
nal  transcribed  spacer (ITS)  sequence  type. The
population  of P. multistriata  in  our study area, the
Gulf  of Naples, exhibits two markedly distinct types
of ITS sequences  and  recombinants  thereof  (ITS
rDNA,  D’Alelio  et al. 2009b).  Individual cells and
monoclonal  laboratory  strains generated  from  sin-
gle  cells possess either  one  sequence  type, or the
other,  or a mix of  both.  Cells interbreed  freely, irre-
spective  of  their  ITS sequence  types.  This implies
that  the  F1 cells resulting  from a cross between par-
ents  with different  ITS sequence  types must  exhibit
both  ITS sequence  types.

To assess  the  microsatellite  mutation  frequency
over  the vegetative  phase of the diatom’s  life cycle,
we  screened  26 monoclonal  strains over  various
time  intervals (3  – 16 months,  ca. 45-240 vege-
tative  divisions). We built  a computer  model that
simulates  mutation  accumulation  in our culturing
protocol,  with which we estimated  the mutation rate
(expressed  as mutations  per division) required to
explain  the observed  number  of mutations accu-
mulated  in our  strains.

The results acquired  from  these various
approaches  provide  insights  in the  inheritance
mode  of microsatellite  markers  in heterothallic
diatoms.  Furthermore,  by tracking  microsatellite
patterns  of  clones over the  vegetative part of their
life  cycle, and  by assessing  the patterns from one
generation  into the next, we are  able to assess
the  relative  importance  of mutations acquired
during  the vegetative  versus the sexual phase of
the  diatom  life cycle. This study provides novel
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Figure  1. Percentage  of  core  repeat  mutations
(CRMs) as  a function  of  the  microsatellite  core  length
(in base  pairs).  Microsatellite  core  composition  is  indi-
cated between  brackets.  The  volume  of  the  circles  is
proportional to  the  polymorphism  of  each  locus.

insights  into how genetic  diversity is generated  in
microsatellite  loci in diatoms,  which  is relevant  for
our  understanding  of microsatellite-based  genetic
diversity  in natural  populations as well  as for
the  evaluation of genotypic  stability of laboratory
cultures.

Results

Genetic Changes in Mitotic Divisions

A  total of 22 out of 26 Pseudo-nitzschia  multistri-
ata  strains  analysed exhibited  differences  in one
or  more  of the seven microsatellite  loci  after differ-
ent  time intervals whereas none of  these strains
showed  variations  in their  ITS rDNA types. The
microsatellite  variations,  i.e. the  core  repeat muta-
tions  (CRMs), consisted  of the  addition/deletion  of
one  to three  core  repeats (Supplementary  Table
S1).  The number  of  CRMs  recorded  (i.e.  fixed in
the  culture) for  each strain  varied  between  zero
and  three. In total, we recorded  42 CRMs in the 26
strains:  34 were single CRMs,  i.e. only  one allele
mutated  per locus, and eight were  double  CRMs,
i.e.  both  alleles mutated  in a given  locus. CRMs
were  observed in all microsatellites  besides  PNm7
(Fig.  1).  In one strain  three  alleles  were detected
instead  of two at  PNm16 (Supplementary  Table
S1).  Loci differed significantly  in the  mean  num-
ber  of recorded  mutations  (bootstrap:  p<0.0001).
Significant  variation  in the number of CRMs was
explained  by microsatellite  size expressed  as  the
number  of core  repeats  (Ordinal Logistic  regres-
sion:  Z=2.10,  p=0.035)  (Fig.  1). The analysis
showed  a mean  odds ratio=5.23  (5-95%  Confi-
dence  Interval  (CI): 1.12 -  24.41),  indicating that

with the  addition  of each core repeat,  the proba-
bility  of adding  a CRM  increased  by  circa a factor
5.  Remarkably,  neither  the repeat  unit (di- or  tri-
nucleotide)  of the locus  (Z=-1.83, p=0.068),  nor the
time  in culture  (Z=0.40,  p=0.691)  explained signif-
icant  variation  in the number  of recorded CRMs.
The  latter finding is particularly  noteworthy,  given
that  the  time in culture varied  considerably between
strains  (3 – 16  months),  which  should have resulted
in  a larger  number  of mutations  in the oldest strains.

We  analysed  whether  the  rate with  which  muta-
tions  were fixed differed  significantly  between the
three  time  intervals  (Experiment  A, B  and C) in
which  we subdivided  strains,  which  were kept in cul-
ture  for an average  of 13.7,  6.0 and  4.25 months,
respectively.  Table 1 shows  the results  of a  binomial
mass  function.  In this analysis, we used  the average
mutation  rate in a particular  experiment  (expressed
as  mutations  per strain  per time  in culture) to calcu-
late  the cumulative  binomial  probability of finding
the  number of mutations  in another  experiment.
The  results reject  the  null  hypothesis  of an equal
mutation  rate  in  4 out  of 6 pairwise  comparisons
(Experiment  A vs. B, B vs. A,  A vs.  C and C vs.
A).  Only the  mutation  rates in Experiments B  and
C,  i.e. strains  that were  kept in culture  for a limited
time  period  of 3 – 6  months,  were not significantly
different  (Table 1). Apparently,  the  mutation  rate
during  the vegetative  phase  was high at the start
of  a culture and then  levelled  off rapidly. Next, we
designed  a computer model  to estimate  the  number
of  mutations  accumulated  in diatom  strains,  simu-
lating  the population  demography  (i.e. fluctuations
in  population  size during the experiment  and the
time  in culture)  across a range  of  mutation rates
(10-4 ≤ �  ≤ 10-2.5). Results  of this analysis showed
that  a mutation  rate  of � ≈ 3×10-3 is  required to
explain  the  large  number  of mutations  accumulated
in  strains kept in culture  for only  3 –  4 months
(Fig.  2). A mutation  rate of � ≈ 1×10-3 is more
representative  of the number  of mutations accumu-
lated  in the  strains that have  been cultured  for the
longest  time  (ca. 16 months).

Inheritance Pattern

In order to estimate  the  inheritance  patterns and
to  evaluate the genetic variation arising during sex-
ual  reproduction,  we performed  crosses using four
pairwise  combinations  of five parental  strains.  The
parental  strains possessed  distinct  microsatellite
multi-locus  genotypes  (Table 2).  The  proportions of
the  various expected  F1  genotypes  were estimated
per  locus for  each mating  experiment,  assum-
ing  Mendelian  inheritance (Table 2). Expected
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Table  1. Differences  in  mutation  rate  calculated  using  a  binomial  mass  function.

Experiment  N  Time  Mutations  �  Hypothesis  and  p-value  Hypothesis  and  p-value

A  7  13.71  15  0.1563  P(�A≥�B)  =  0.00016  P(�A≥�C)  =  0.01251
B 11  6 17  0.2576  P(�B≥�A)  =  0.00395  P(�B≥�C)  =  0.14168
C 8  4.25  11  0.3235  P(�C≤�A)  =  0.01092  P(�C≤�B)  =  0.15516

“N”  denotes  the  number  of  strains  in  each  experiment  (A,  B  and  C),  “Time”  indicates  the  time  (in  months)  the
strains were  kept  in  culture,  “Mutations”  indicates  the  number  of  mutations  summed  across  the  strains  in  each
experiment, “�”  stands  for  the  mutation  rate  calculated  by  dividing  the  number  of  mutations  by  the  total  time
the strains  were  kept  in  culture.  The  column  “Hypothesis  and  p-value”  gives  the  result  of  the  binomial  mass
function which  tests  the  hypothesis  that  the  number  of  mutations  observed  in  one  line  (A,  B or  C)  is  equal  to,
or less  than,  the  number  found  in  another  line  for  each  of  the  experiments.

proportions  generally  matched  observed  ones  indi-
cating  that (+)  and (-) parental  strains  contributed
equally  to the formation of the allelic combination
of  their  progeny  (Table  2).  However, there  was a
single  exception;  one of the F1  strains in  mating
experiment  #4 exhibited the same allelic  pattern as
its  (-)  parental  strain SY379. Nevertheless,  it was
an  F1 strain  as shown by its mixed ITS-A/B type
and  its large  cell size (74.6  ± 1.06 �m).

Several  mutations  and/or  gene  conversion
events  appear to  have occurred  also during  the sex-
ual  cycle (indicated  by a * in Table 2).  In the F1
generation,  91.3%  of the  examined  strains  exhib-
ited  genotypes predicted  by Mendelian  inheritance
rules  (Table 2). The  unexpected  genotypes  at a

Figure  2.  The  mean  (±SE)  simulated  number  of
mutations  per  microsatellite  locus  accumulated  over
time (in  months)  for  different  mutation  rates.  The  mean
(±SE) observed  number  of  accumulated  mutations
(averaged  across  loci  and  strains)  is  shown  in  the  grey
envelope. Most  consistent  with  the  empirical  data  are
a mutation  rate  of  �=10-2.5 (�≈3×10-3)  for  the  strains
kept in  culture  for  3-6  months  and  a  lower  mutation  rate
of �=1×10-3 for  the  strains  cultivated  for  16  months.

given  locus  (i.e. 148 loci out of 1705  tested) pos-
sessed  new alleles (18 loci) or  homozygote  excess
(3  loci) or deviated  from the expected  Mendelian
patterns  at  one  or  more loci (96  loci,  p < 0.05). The
potential  presence  of a null  allele was suggested
by  Micro-Checker at locus  PNm1, although the null
allele  frequency  was low (r=0.045,  Brookfield1 esti-
mator),  (Supplementary  Table S2).  No evidence of
large  allele dropout  or scoring errors  was found in
the  seven microsatellite  loci  (Supplementary Table
S2).

The  average  genotypic  diversity (G/N = num-
ber  of distinct  genotypes  over the total number
of  individuals)  in the  F1 strains  for the  four mat-
ing  experiments  was 67.35%  (Go (168)/ NF1 (245);
Table  3), indicating  that  identical  genotypes were
present  in the  F1  progeny.  An  unexpectedly low
level  of genotypic  diversity (G/N=43.48%;  Table 3)
was  observed  in cross #4. In this cross  we  observed
significantly  fewer genotypes  (Go=26) than were
expected  based on the total number of unique
genotypes  possible  (GT=48) and  the number of
samples  screened  (NF1=66; Table 3). Using a ran-
domisation  test  with  the sample size  and the total
possible  number  of  genotypes,  the expected mean
(±99%  CI) number of genotypes  (GE=38.9 (±31-
49))  was considerably  larger than the  observed
number  Go=26  (see Fig.  3). This  suggests  that the
segregation  of multi-locus  genotypes,  at  least in this
cross,  was not  strictly random. The  genetic diversity
generated  by the four distinct  crosses is visualized
in  Figure 4.  The  genotype  of  each individual has
been  mapped  in a two-dimensional  space resulting
from  a Factorial Correspondence  Analysis  (FCA).

A  subset  of F1  strains from the different  crosses
was  characterized  for  ITS.  All the progeny of the
mating  experiments #2 and #4,  which involved
parental  strains of ITS-A  and ITS-B  types, exhibited
an  ITS-A/B type (Table 3), while  in experiment  #1,
three  out of 34 strains exhibited an ITS-A  type. Mat-
ing  experiment  #3, which involved  parental strains
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Table  3. Microsatellite  genotypic  diversity  and  ITS-type  diversity  of  the  F1  progeny.

#  NF1 Go GT G/N  PG MT  −  MT  +  NF1 ITS-typed NITS-A NITS-B NITS-A/B

1  61  54  864  0.89  6.25  A  B  34  3  0  31
2 92  70  128  0.76  54.69  A  B  31  0  0  31
3 26  18  48  0.69  37.50  A/B  B  11  0  2  9
4 66  26  48  0.39  46.43  A  B  45  0  0  45
Tot 245  168  121  3  2  116

The  mating  experiment  (#),  the  number  of  F1  initial  cells  isolated  (NF1),  the  number  of  observed  genotypes
(Go),  the  theoretical  number  of  possible  genotype  given  the  parental  genotypes  (GT),  the  genotypic  diversity
(G/N), the  percentage  of  recorded  over  possible  number  of  genotypes  (PG),  the  ITS-type  for  each  parental
strain involved  (MT  − and  MT  +),  the  number  of  F1  strains  for  which  the  ITS-type  is  known  (N F1 ITS-typed),  and
the number  of  strains  recorded  per  ITS  type  (N ITS-A / -B / -A/B),  are  shown.

of ITS-A/B  and ITS-B types, gave  rise to two F1
strains  of ITS-B  type out  of the 11 strains  analysed
in  total (Table 3).

The two ‘sister cells’, CRD1 and CRD2,  gener-
ated  by the same pair  of parental cells exhibited the
ITS-A/B  type, which was  as expected given that one
parental  strains  had an ITS-A type  and the  other
one  an ITS-B type  (Table 4). The  microsatellite  pat-
terns  of the sisters  were identical  and  their allelic
combination  was in accordance  with  the hypothe-
sis  that they inherited  one allele from  each  parental
strain  (Table 4).

Figure  3.  The  observed  and  mean  (±1-99%CI)  simu-
lated %G/N  (number  of  distinct  multi-locus  genotypes
(G) in  a  sample  of  N  individuals  screened).  Note  that
Cross #4  has  significantly  fewer  distinct  genotypes
than expected  based  on  the  number  of  screened  F1
strains and  the  total  possible  number  of  multi-locus
genotypes  produced  by  this  cross.

Discussion

The  gain of genetic  diversity in the  diatom  Pseudo-
nitzschia  multistriata  across different  phases of
its  life cycle was demonstrated  in our labora-
tory  experiments.  Sexual  reproduction  generated a
plethora  of new  genotypes  as expected  based on
the  parental  genotypes  and  Mendelian inheritance
rules.  Yet, our  results reveal  the  fixation of several
mutations  in the clonal  cultures, suggesting a high
frequency  of mutations  and/or  some form  of posi-
tive  selection.  If mutations  occur  with such a high
frequency  in the field as well, then they will have a
significant  impact  on  the  population  genetic diver-
sity.  Novel mutations  occur during  cell division and
during  sexual  reproduction  induced in the labora-
tory  and  are fixed during  the extensive phase of
vegetative  cell division. The  computer  model shows
that  the rate  at which mutations  get  fixed in the

Figure  4.  Results  of  Factorial  Correspondence  Anal-
ysis based  on  microsatellite  allelic  frequencies  among
the 246  F1-offspring  obtained  in  the  four  crosses
between  the  five  parental  strains.  Clouds  represent
the F1  genotypes  of  different  crosses  (Cross  1 within
thin circle,  Cross  2  within  bold  circle,  Cross  3  within
dashed circle  and  Cross  4  within  dashed  bold  circle).
Parental cells  are  marked  with  arrows.
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Table 4. Genotypes  of  the  parental  (SY017  and  SY138)  and  F1  (CRD1  and  CRD2)  strains  raised  from  two
initial cells  produced  on  the  same  gametangium  (‘sister-cell’)  of  Pseudo-nitzschia  multistriata:  their  ITS-types
(ITS), and  the  microsatellite  pattern  over  the  seven  loci.

Strain  ITS  PNm1  PNm2  PNm3  PNm5  PNm6  PNm7  PNm16

SY017 A 127  127 175  175  205  208  238  242  261  267  262  262  325  337
SY138 B 115 127 175  187 205  208  238  242  267  271  258  262  325  337
CRD1 A/B 127 127 175  175 205  208 238  242 267  271 258  262  325  337
CRD2 A/B 127 127 175  175 205  208 238  242 267  271 258  262 325  337

strains (and  hence,  the  estimated  mutation  rate) dif-
fers  between  strains, and that the inferred mutation
rate  is highest in  the  newest strains.

Mutations during Mitotic Divisions

Our  results  reveal that  microsatellite  genotypes  of
P.  multistriata  strains  change  over  periods  of  one
to  several months of vegetative  maintenance  in
culture.  The  mutation  rate during  vegetative repro-
duction  is high, particularly  during the initial  months
of  culturing.  We estimated it to be about three times
higher  than  that  estimated  in previous  studies in
human  (�  = 10−3 to 10−4/locus/generation,  see e.g.
Brinkmann  et al. 1998;  Ellegren  2000a; Hohoff et  al.
2007),  about one order  of magnitude  higher  than
reported  in the lizard  Egernia sp., yet it is consid-
erably  lower than  the rate  of germline  mutations  in
various  organisms (� = 1 × 10−2 to 4 ×  10−2 per
meiosis,  see Ellegren 2000a).  Microsatellite  DNA
sequences  show  frequent additions  and deletions
of  a core  repeat by  slippage  of the DNA  polymerase
(Hancock  1999),  although  larger changes  of multi-
ple  repeat  units appear to be more common  in some
organisms  (Seyfert  et al. 2008).  Changes  can  also
arise  from  heteroduplex  repair,  which increases  or
decreases  locus  length in heterozygous  conditions.
The  microsatellite mutation  frequencies  observed
in  P. multistriata corroborate  observations  by ear-
lier  workers  that longer  loci exhibit higher  mutation
rates  (Ellegren  2000b, 2004).  However, we  did not
detect  a significant  difference  between  di-  and tri-
nucleotides,  possibly due to a lack  of statistical
power  and the small number of  loci  analysed.

We  do not believe  that the high fixation  rate
of  mutations  in our  clonal cultures  is  related  to
our  culture  transfer  procedure.  Cultures  experience
a  severe  bottleneck  at each  transfer  into  fresh
medium,  with only a  few dozens  of cells  inoculated
every  3–4 weeks. There is only a small probability
that  one or  a few of those  transferred  cells exhibits
a  mutation.  On the other  hand,  if one  or more
of  them  do, the likelihood that  this novel  mutation
replaces  the ancestral  allele is increased  relative  to

a culture  that  is refreshed  by sampling many cells.
Simulations  indicated (data  not shown)  that the
effects  of a reduced  probability  of sampling a  muta-
tion  versus an increased  effect of  drift  cancel each
other  out, which indicates that this aspect  of the
culturing  procedure  does not  affect the observed
mutation  rate. In  rare cases, multiple alleles can
be  sampled  when some  cells  contain the  ances-
tral  state allele and a few others the mutant allele.
For  example,  strain  SY411  possessed three alle-
les  at locus PNm16.  Reusch and  Boström (2011)
made  a similar observation  within  individual clones
of  the seagrass  Zostera  marina, where somatic
mutations  accumulated  over time in different  parts
of  the clonal  plant.

Remarkably, the number of core-repeat  muta-
tions  that are fixed in our strains  did not increase
linearly  with  time in  culture,  but instead,  levelled
off.  Apparently,  mutations  become  fixed especially
during  the initial months  following culture  establish-
ment.  We believe  this trend  is real, and not due to
noisy  data because  the 26  strains  analysed across
a  3 – 16  month  period  guarantee  sufficient  statisti-
cal  power.

A possible explanation  for  a decrease in the
mutation  fixation rate  with time  in culture is that
back-  or double-mutations  erase  previous muta-
tions  in the longer  established  strains. The initially
high  fixation rate  could  be a response  to  changes in
the  environment  when  strains are transferred from
the  field into  culture condition.  We  do not  believe
that  the elevated mutation  rate  found during asex-
ual  reproduction  is due to a  selective sweep  or
genetic  hitchhiking  per  se. Each  microsatellite vari-
ant,  being a mutant  or ancestral  allele,  will benefit
equally  from such a selective sweep. Rather,  in
the  absence  of sex and recombination,  the  adap-
tive  evolution  in an isolated  culture can only occur
through  novel mutations.  Given  that the culture
environment  differs dramatically  from the  natural
environment,  it is likely  that  some  mutations that
would  be neutral  or even  detrimental in the wild
are  beneficial  under  lab conditions (Lakeman et al.
2009).  We propose  that in our  study, lineages
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with a relatively  elevated  mutation  rate proliferated
because  they accumulated  novel beneficial  muta-
tions  (some  of which  are  adaptive in  the novel
laboratory  environment)  more rapidly  than lineages
with  a  lower mutation  rate.  This  resulted  in the rel-
atively  high microsatellite  mutation  rate  recorded,
which  was particularly  enhanced  in the first few
months  after  culture  establishment.

Inheritance Patterns and Diversity Across
Sexual Reproduction

Results of the observed microsatellite  inheri-
tance  patterns in parents  and their  F1-offspring
(Table  2)  confirm  the  occurrence  of heterothallic
sexual  reproduction in Pseudo-nitzschia  multistri-
ata  (D’Alelio  et al. 2009a)  and reveal that, by
and  large,  microsatellite  inheritance  patterns follow
Mendelian  rules.  This  result  provides  the  ‘genetic
proof’  for  the occurrence  of sexual recombination
in  diatoms  (Schurko  et al. 2009).

Significant deviations  from Mendelian  inheri-
tance  patterns were recorded in two  microsatellites
(PNm1  #1 and PNm16 #4).  The  recorded  homozy-
gote  excess in  PNm1 may be explained  by the
presence  of null alleles  (Callen  et al. 1993;  Selkoe
and  Toonen 2006),  or  possibly  gene  conversion
(Amos  2009;  Duret  and Galtier  2009). In  a few
cases,  we also  recorded  the occurrence  of new
alleles,  probably  due to slippage of the DNA poly-
merase.

The  term ‘null allele’ refers to an  allele  that  can-
not  be visualized  because of a mutation  in one  of
the  priming  sites. In our dataset,  the presence  of a
null  allele may explain the excess of homozygotes
at  locus PNm1, cross  #1 (Table 2).  This  null allele
could  be due  to a  mutation  in the priming  site  of the
115  allele  of PNm1. Consistent  with this  interpre-
tation  is the low frequency  of a null allele  (r=0.045)
detected  at this locus by Micro-Checker.  Alterna-
tively,  the 115-allele may  also have mutated  to a 127
allele,  although we think this is less  likely  because
the  addition  of so many repeat  units in  a  single
event  was not observed elsewhere.  An  alternative
explanation  for the observed homozygote  excess
is  the occurrence  of gene  conversion,  when one
allele  converts  the alternative  allele  to its  own state.
In  many loci, gene conversion appears  to be more
common  than mutations,  but it can only be  rarely
detected  unambiguously  (see  e.g. Spurgin  et al.
2011).  We  cannot exclude the possibility  that gene
conversion  has converted  the 115 to a 127  allele.
In  three other cases, an excess of  homozygotes
may  be  explained by gene  conversion  as well (e.g.
Table  2, #2 PNm1 and #4,  PNm6 and  PNm7).

Mating experiments  showed  that the genetic
diversity  generated  by sexual reproduction is vast,
even  with just  four crosses.  Given large enough
numbers  of offspring resulting from a crossing
experiment  between  two parental  strains,  the  F1
cells  will exhibit all the genotype  combinations pos-
sible  given the parental  genotypes  and  Mendelian
inheritance  of their alleles.

The situation in the field  differs,  of course, rad-
ically  from that in a crossing  experiment with  only
two  parental  genotypes.  In  the  natural  environment
the  microsatellite  variation  is much  larger than in
our  experimental  design, and  sexual  reproduction
occurs  randomly  between  any  parental pair of the
right  mating  type. Therefore,  this system will main-
tain  a huge genotypic diversity, given the biennial
frequency  of sexual  reproduction  events  in P. mul-
tistriata inferred  from cell size patterns recorded
in  the  natural  environment  (D’Alelio et al. 2010).
Thus,  in case  two years  of on-going  clonal repro-
duction  combined with natural  selection or  random
drift  reduces  the genotypic  diversity of a population,
then  recombination  through  sexual reproduction
boosts  genotypic  diversity again.

Interestingly, in one of the crosses (#4),  the  geno-
typic  variation  in the F1  was significantly  lower than
expected  based on  the total possible number of
distinct  multi-locus  genotypes  and  the  number of
individuals  screened.  In that cross, the number of
F1  genotypes  recorded among  these strains was
about  two times  lower than the maximum  number
of  expected genotypes  (i.e. 26 observed versus
48).  This  suggests  that the segregation  of alleles
was  not strictly random,  or that selection  operated
against  (and/or  favoured)  certain genotypes.  Selec-
tion  could have  taken place  during  the  one week
of  growth in the culture plates, or  during the 1-2
weeks that each of the F1  cultures were transferred
to  medium  and  incubated.  Not all the picked cells
survived  into strains but the  mortality  rate  did not
differ  from  that in crossing  experiments  #1 and  2.
Mortality  was markedly  higher  in the  F1 of cross #3
but  here  genotypic  diversity was as expected.

At which Stage during Meiosis does
Degeneration of Nuclei Occur?

As in  other  pennate diatoms  (Chepurnov  et al.
2004),  each sexualized  parental  cell (called
gametangium)  of P. multistriata  generates  only two
haploid  gametes, which conjugate  with their coun-
terparts  generated  by the  gametangium of the
opposite  mating  type. The resulting  pair of ‘true
sister  cells’ can  be identified  as such because
the  auxospores  from which  they emerge have
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Figure  5.  Schematic  drawings  illustrating  gamete  for-
mation. Two  chromosomes  (one  bold  and  the  other
thin) are  represented,  with  one  chromatid  in  black
and its  homologue  in  grey.  Duplication  of  the  genetic
content (2nd  row),  first  meiotic  division  (3rd  row)  and
second meiotic  division  (4th  row).  Formation  of  four
gametes, the  rule  in  most  Eukaryotes  (A);  one  nucleus
degenerates  during  the  first  meiotic  division  and  two
identical gametes  are  produced  (B);  two  nuclei  degen-
erate during  the  second  meiotic  division  and  two
different gametes  are  produced  (C).

developed  side  by side on the same gametangium
(D’Alelio  et al. 2009a).

The genotypic  makeup  of the resulting  “true  sis-
ter  cells”  may reveal  the relative  importance  of
crossing-over  events  in reshuffling the genetic infor-
mation  on  the homologous chromosomes  before
the  first meiotic division because  the effect of
crossing-over  can  be spotted  in the  genotypes  of
sister  cells from  the same gametangium.  In addi-
tion,  the genotypic  makeup of these sisters may
uncover  how  meiotic  divisions proceed  and  at which
meiotic  division nuclei degenerate.  The  fact that
only  two gametes are produced per  gametangium
can  be achieved  in one of two ways  (Round  et al.
1990):  i) one of the  two nuclei degenerates follow-
ing  the first  meiotic division (Fig. 5B; Hypothesis
1).  In this case, the expectation  is that, at least
in  the  absence  of crossing-over, the two gametes
share  the  same alleles and  that the  two sister cells
resulting  from conjugation  of these  two gametes
with  the gametes  of the partner gametangium  are
genotypically  identical; ii) any combination  of two
of  the four haploid nuclei degenerates  after the
second  meiotic  division (Fig.  5C;  Hypothesis  2).
In  this case the expectation  is that, again, in the
absence  of  crossing-over,  the  pairs  of gametes
are  genotypically  identical  in 50%  of cases, and
hence,  the two sister  cells resulting  from conjuga-
tion  of  these  two gametes  with the gametes  of the
partner  gametangium  are  genotypically  identical  in

25% of cases. Chepurnov  et al. (2005) observed
in  Pseudo-nitzschia  pungens  that two nuclei are
formed  after meiosis I and  that two  of the four nuclei,
formed  by karyokinesis  after meiosis  II,  are aborted
before  gamete  formation (sensu Fig.  5C Hypothesis
2).

The  fact that the two  ‘sister strains’ in P. multi-
striata  share  an identical microsatellite fingerprint
suggests  that  crossing over does not occur fre-
quently  or that the  microsatellite loci  are situated
close  enough  to the  centromeres  of their chromo-
somes  to have  a low probability  of being exchanged
between  sister chromosomes  by means of crossing
over.  However, our  results do  not  favour Hypothesis
1  above  Hypothesis  2 because our  result  - geno-
typic  identity of  the daughter  cells  - is based on a
single  observation,  meaning  that a posteriori, the
genotypic  identity  could be the one out of four  cases
predicted  by Hypothesis  2.

Conclusions and Perspectives

We  demonstrate  that microsatellite  markers within
P.  multistriata  are  inherited generally  according
to  Mendelian  rules,  and  that rare deviations are
due  likely to gene  conversion  and step-wise  muta-
tions.  The  occurrence  of ‘somatic’ mutations in
microsatellite  regions  in  monoclonal  cultures sug-
gests that  the microsatellite  genotypic  diversity
observed  in  natural  populations  may result,  at least
in  part, from mutations  during  the  vegetative part
of  the life cycle. This  rate at which  these mutations
are  fixed is particularly  high in the initial months of
culturing  when  the diatoms  cope  with a dramatic
change  in their environment.

Methods

Culture  isolation  and  maintenance:  Twenty-seven  strains
of Pseudo-nitzschia  multistriata  were  isolated  from  net  sam-
ples collected  at  the  Long  Term  Ecological  Research  station
MareChiara  (40◦48.5′N,  14◦15′E)  in  the  Gulf  of  Naples
(Supplementary  Table  S1). Individual  cells  or  chains  were  iso-
lated under  an  inverted  light  microscope  using  a  micro-glass
pipette and  cleaned  by  sequential  washing  through  several
droplets  of  f/2  medium  (Guillard  1975).  Each  cell  or  chain  was
placed  in  a  separate  well  of  a  12-well  culture  plate  (Costar®
CLS3513,  Corning  Incorporated,  NY,  USA)  containing  2  ml  f/2
sterile-filtered  medium  and  grown  under  optimal  conditions  until
enough  biomass  was  obtained  for  DNA  extraction.  Backup  cul-
tures were  grown  at  a  low  division  rate  (ca  0.5  division.day-1)
at 15 ◦C,  under  a  sinusoidal  light  regime  comprised  between
40 to  80  �mol  photons  m-2 s-1 provided  by  cool-white  fluores-
cent tubes,  a  12  h:12  h  light:dark  photocycle  and  under  constant
orbital  agitation  (70  rpm;  SSL1,  International  PBI  S.p.A.,  Milan,
Italy). Every  month,  culture  plates  were  examined,  cell  density
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was  estimated  semi-quantitatively  and  a  volume  of  a  few  �L,  to
include ca.  80  cells,  was  transferred  into  new  medium.

Accumulation  of  mutations  in  monoclonal  cultures:
Twenty-six  strains  were  used  to  assess  the  genotype  changes
and the  mutation  rate  in  culture  (see  Supplementary  Table  S1).
To obtain  material  for  DNA  extraction,  a  small  volume  of  culture
was inoculated  in  a  culture  flask  (Corning® 430639,  Corning
Incorporated,  NY,  USA)  containing  25  mL  of  f/2  medium  and
grown  until  the  required  biomass  was  obtained.  DNA  extrac-
tions were  performed  as  described  in  Tesson  et  al.  (2011)  and
were carried  out  at  different  time  intervals,  spanning  from  3  to
16 months  (Supplementary  Table  S1).

Mating  experiments:  Five  strains,  three  of  the  (-)  mating
type and  two  of  the  (+)  mating  type  (Table  2),  were  used  to  carry
out four  mating  experiments  to  analyse  the  allelic  inheritance
of microsatellite  and  ITS  markers  in  the  F1  generation.  Mating
types  (− and  +)  were  assigned  based  on  the  results  of  pilot
experiments  in  which  strains  of  different  cell  size  were  crossed
in pair-wise  combinations:  the  strain  bearing  the  auxospores
was  defined  as  the  (-)  mating  type.  The  average  cell  size  of  the
parental  strains  ranged  between  46.8  �m  and  25  �m  in  length.
Each cross  was  repeated  at  least  sixty  times,  inoculating  about
5,000  cells  ml-1 of  each  exponentially  growing  parental  strain  in
culture  plate  wells  filled  with  4  ml  of  filtered  f/2  medium.  Culture
plates  were  incubated  at  18 ◦C,  12  h:12  h  light:dark  photocy-
cle and  an  irradiance  of  80-90  �mol  photons  m-2 s-1 provided
by cool-white  fluorescent  tubes.  A  few  days  after  the  start  of
the experiment,  all  the  four  crosses  generated  numerous  aux-
ospores  and  large-size  F1-cells,  spanning  between  80  and
68 �m  in  length.  Two  to  four  F1  initial  cells  or  post-initial  cells
(i.e. long  cells  that  arose  from  vegetative  division)  were  ran-
domly  isolated  from  each  well,  in  order  to  avoid  resampling  bias.
The isolation  was  performed  using  an  inverted  light  microscope
and drawn-out  glass  Pasteur  pipettes.  Each  F1  cell  isolated  was
transferred  into  a  new  well  of  a  12-well  culture  plate  (Costar®
CLS3513,  Corning  Incorporated,  NY,  USA)  and  incubated  at  the
same conditions  as  indicated  above.  Among  the  1247  F1-cells
isolated,  298  strains  survived  among  which  246  were  geno-
typed for  ITS  rDNA  and  microsatellite  sequences.  Among  them,
two cultures  were  obtained  by  isolating  a  pair  of  ‘true  sister
cells’, that  is,  the  two  cells  resulting  from  conjugation  of  each
one of  the  two  gametes  generated  by  the  two  gametangia  of
opposite  mating  type  (CRD1  and  CRD2).  After  one  week  of
growth  in  the  culture  plates,  each  F1  monoclonal  culture  was
transferred  in  30  ml  f/2  medium  and  incubated  for  about  1-2
weeks  before  DNA  extraction.

ITS (Internal  Transcribed  Spacer)  -  rDNA  analysis:  The
ITS region  of  the  nuclear  rDNA  (ITS-1,  5.8S  rDNA,  and
ITS-2) of  cultured  cells,  F1  and  parental  strains  was  PCR-
amplified.  Amplifications  were  performed  in  96-wells  plates  in
a 25  �l  reaction  volume  containing  25  pmol  of  each  primer
(ITS-1 as  forward  primer,  5′-TCCGTAGGTGAACCTGCGG-3′,
(White et  al.  1990)  and  a  new  reverse  primer  named  ITS-4b,
5′-TCCTCCGCTTAATTATATGC-3′),  1  mM  Tris-HCl,  0.15  mM
MgCl2,  5  mM  KCl,  pH  8.3  20 ◦C,  0.2  mM  dNTP,  6  U  Taq  poly-
merase,  1.10  mg  of  DMSO,  about  20  ng  of  DNA,  and  14  �L  H2O.
An initial  denaturation  step  of  2  min  at  96 ◦C,  was  followed  by  40
cycles (1  min  at  94 ◦C,  1  min  at  46 ◦C  and  2  min  at  72 ◦C)  and  by
a final  extension  step  of  5  min  at  72 ◦C.  PCR  products  were  puri-
fied and  sequenced  as  in  D’Alelio  et  al.  (2009b). The  software
BioEdit  (version  7.0.9.0)  was  used  to  infer  ITS  sequences  from
the electropherograms.  The  ITS  A-type,  B-type  and  A/B-type
were attributed  as  described  by  (D’Alelio  et  al.  2009b).

Microsatellite  analysis:  Microsatellite  loci  were  amplified
and screened  as  described  in  Tesson  et  al.  (2011).  Allele
designation  was  performed  with  the  CEQTM2000XL  (version

4.3.9,  Beckman  CoulterTM)  software.  Homogeneity  of  the
resulting  data  set  and  scoring  errors  were  assessed  with  Micro-
Checker  (version  2.2.3,  van  Oosterhout  et  al.  2004).  Genotypic
diversity  was  obtained  with  Gimlet  (version  1.3.3,  Valière  2002).

Statistical  analyses:  Z-tests  and  the  Pearson  Chi-square
tests (Chi2)  were  used  to  compare  observed  versus  the
predicted  proportions  of  genotypes  assuming  Mendelian  inheri-
tance (Frontier  et  al.  2007;  Zar  1999).  In  order  to  examine  which
factors  explained  significant  variation  in  mutation  accumulation,
we used  an  Ordinal  Logistic  Regression  with  the  number  of
mutations  per  microsatellite  locus  per  strain  being  response
variable,  and  the  core  repeat  unit  (di-  or  tri-nucleotide)  as  fac-
tor. In  this  model,  time  in  culture  (in  months)  and  microsatellite
core length  (in  bp)  were  used  as  covariates.  In  order  to  obtain
maximum-likelihood  estimates  of  all  parameters,  the  model  was
fitted using  an  iterative  re-weighted  least  squares  algorithm.
The log-likelihood  was  used  to  test  whether  the  coefficients  of
the predictors  were  significantly  different  from  zero.  A  logit  link
function was  employed  to  calculate  the  odds  ratio  and  its  95%
confidence  interval.

A Monte  Carlo  procedure  was  used  to  simulate  the  muta-
tion accumulation  of  microsatellite  loci  in  strains  kept  in  culture
for a  period  of  3  –  16  months.  In  the  computer  model,  the  cul-
tures were  started  from  a  monoclonal  strain  and  each  month
(15 divisions)  the  diatom  population  was  bottlenecked  to  N=50
individuals,  simulating  the  refreshing  and  inoculation  of  the  cul-
tures.  Simulations  with  bottleneck  sizes  of  N=20,  100  and  500
were also  run  to  examine  the  effect  of  culture  procedure  on  the
observed  number  of  mutations.  Subsequently,  the  population
grew exponentially  through  clonal  division,  with  each  individual
contributing  to  the  next  generation  according  to  a  Poisson  distri-
bution (Mean  =  Var  =  2).  At  the  end  of  the  experiment,  the  strain
was genotyped  by  taking  a  small  subsample  of  100  diatoms.  We
assumed  that  a  microsatellite  peak  needs  to  have  a  minimum
height  (number  of  allelic  copies  PCR  amplified)  to  be  observed,
and hence,  the  model  scored  only  alleles  with  relative  frequency
(p>0.1) in  this  subsample.  Microsatellites  mutated  according  to
a stepwise  mutation  model,  and  the  mean  and  the  standard
error  of  the  mean  (SE)  were  calculated  over  1000  simulations.
The  code  for  this  model  was  written  for  Minitab  12.1  and  is
available  from  the  authors  upon  request.

Variation  in  the  mutation  rate  between  time  periods  (i.e.
strains  kept  in  culture  for  9-16  months  (ca.  189-336  vegeta-
tive divisions),  6  months  (ca.  126  vegetative  divisions)  and  3-5
months  (ca.  63-105  vegetative  divisions),  referred  to  as  experi-
ment A,  B  and  C,  respectively)  was  calculated  using  a  binomial
mass function.  The  mean  genotypic  diversity  (G/N  =  number  of
distinct  genotypes  over  the  total  number  of  individuals)  in  the
F1 strains  was  calculated  for  the  four  mating  experiments.  The
observed  G/N  value  was  compared  to  the  distribution  of  the
simulated  values.  The  mean  G/N  (±1-99%CI)  was  calculated
using a  Monte  Carlo  procedure  that  simulated  distribution  of
multi-locus  genotypes  that  could  be  generated  by  the  cross,  and
drawing  from  this  (with  replacement)  a  sample  of  N  individuals
screened.
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