26 research outputs found

    Interaction with the Phosphotyrosine Binding Domain/Phosphotyrosine Interacting Domain of SHC Is Required for the Transforming Activity of the FLT4/VEGFR3 Receptor Tyrosine Kinase

    Get PDF
    The FLT4 gene encodes two isoforms of a tyrosine kinase receptor, which belongs to the family of receptors for vascular endothelial growth factor. As the result of an alternative processing of primary mRNA transcripts, the long isoform differs from the short isoform by an additional stretch of 65 amino acid residues located at the C terminus and containing three tyrosine residues, Tyr1333, Tyr1337, and Tyr1363. Only the long isoform is endowed with a transforming capacity in fibroblasts. We show that this activity is related to the capacity of the tyrosine 1337-containing sequence to interact with the phosphotyrosine binding domain of the SHC protein. This demonstrates that a functional property of this newly described domain includes relay of mitogenic signals. In addition, it shows that the same receptor can mediate different functions through the optional binding of the phosphotyrosine binding domain and that the alternative use of this domain is sufficient to direct the signal toward different pathways

    Ptk7-Deficient Mice Have Decreased Hematopoietic Stem Cell Pools as a Result of Deregulated Proliferation and Migration

    No full text
    International audienceHematopoietic stem cells (HSCs) located in adult bone marrow or fetal liver in mammals produce all cells from the blood system. Atthe top of the hierarchy are long-term HSCs endowed with lifelong self-renewal and differentiation properties. These features arecontrolled through key microenvironmental cues and regulatory pathways, such as Wnt signaling.We showed previously that PTK7,a tyrosine kinase receptor involved in planar cell polarity, plays a role in epithelial Wnt signaling; however, its function in hematopoiesishas remained unexplored. In this article, we show that PTK7 is expressed by hematopoietic stem and progenitor cells, withthe highest level of protein expression found on HSCs. Taking advantage of a Ptk7-deficient mouse strain, we demonstrate that loss ofPtk7 leads to a diminished pool of HSCs but does not affect in vitro or in vivo hematopoietic cell differentiation. This is correlatedwith increased quiescence and reduced homing abilities of Ptk7-deficient hematopoietic stem and progenitor cells, unraveling noveland unexpected functions for planar cell polarity pathways in HSC fate

    The ERBB2/HER2 receptor differentially interacts with ERBIN and PICK1 PSD-95/DLG/ZO-1 domain proteins

    No full text
    Identification of protein complexes associated with the ERBB2/HER2 receptor may help unravel the mechanisms of its activation and regulation in normal and pathological situations. Interactions between ERBB2/HER2 and Src homology 2 or phosphotyrosine binding domain signaling proteins have been extensively studied. We have identified ERBIN and PICK1 as new binding partners for ERBB2/HER2 that associate with its carboxyl-terminal sequence through a PDZ (PSD-95/DLG/ZO-1) domain. This peptide sequence acts as a dominant retention or targeting basolateral signal for receptors in epithelial cells. ERBIN belongs to the newly described LAP (LRR and PDZ) protein family, whose function is crucial in non vertebrates for epithelial homeostasis. Whereas ERBIN appears to locate ERBB2/HER2 to the basolateral epithelium, PICK1 is thought to be involved in the clustering of receptors. We show here that ERBIN and PICK1 bind to ERBB2/HER2 with different mechanisms, and we propose that these interactions are regulated in cells. Since ERBIN and PICK1 tend to oligomerize, further complexity of protein networks may participate in ERBB2/HER2 functions and specificity

    A role for Erbin in the regulation of Nod2-dependent NF-kB signaling

    No full text
    International audienceNod2 is an intracellular sensor of a specific bacterial cell wall component, muramyl dipeptide, and activation of Nod2 stimulates an inflammatory response. Specific mutations of Nod2 have been associated with two inflammatory diseases, Crohn disease and Blau syndrome, and are thought to contribute to disease susceptibility through altering Nod2 signaling. Association of disease with inappropriate activation of Nod2 highlights the importance of proper regulation of Nod2 activity. However, little is known about specific regulation of the Nod2 pathway. We performed a biochemical screen to discover potential regulators of Nod2 and identified Erbin, a protein involved in cell polarity, receptor localization, and regulation of the mitogen-activated protein kinase pathway, as a novel Nod2-interacting protein. In our studies, we demonstrate specific interaction of Erbin and Nod2 both in vitro and in vivo and characterize the regions required for interaction in both proteins. We found that Nod2-dependent activation of NF-kappaB and cytokine secretion is inhibited by Erbin overexpression, whereas Erbin-/- mouse embryo fibroblasts show an increased sensitivity to muramyl dipeptide. These studies identify Erbin as a regulator of Nod2 signaling and demonstrate a novel role for Erbin in inflammatory responses

    ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor

    No full text
    The ERBB receptors have a crucial role in morphogenesis and oncogenesis. We have identified a new PDZ protein we named ERBIN (ERBB2 interacting protein) that acts as an adaptor for the receptor ERBB2/HER2 in epithelia. ERBIN contains 16 leucine-rich repeats (LRRs) in its amino terminus and a PDZ (PSD-95/DLG/ZO-1) domain at its carboxy terminus, and belongs to a new PDZ protein family. The PDZ domain directly and specifically interacts with ERBB2/HER2. ERBIN and ERBB2/HER2 colocalize to the lateral membrane of human intestinal epithelial cells. The ERBIN-binding site in ERBB2/HER2 has a critical role in restricting this receptor to the basolateral membrane of epithelial cells, as mutation of the ERBIN-binding site leads to the mislocalization of the receptor in these cells. We suggest that ERBIN acts in the localization and signalling of ERBB2/HER2 in epithelia

    Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer

    Get PDF
    Source: doi: 10.1038/ncomms10318The non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway plays a crucial role in embryonic development. Recent work has linked defects of this pathway to breast cancer aggressiveness and proposed Wnt/PCP signalling as a therapeutic target. Here we show that the archetypal Wnt/PCP protein VANGL2 is overexpressed in basal breast cancers, associated with poor prognosis and implicated in tumour growth. We identify the scaffold p62/SQSTM1 protein as a novel VANGL2-binding partner and show its key role in an evolutionarily conserved VANGL2–p62/SQSTM1–JNK pathway. This proliferative signalling cascade is upregulated in breast cancer patients with shorter survival and can be inactivated in patient-derived xenograft cells by inhibition of the JNK pathway or by disruption of the VANGL2–p62/SQSTM1 interaction. VANGL2–JNK signalling is thus a potential target for breast cancer therapy

    The SCRIB Paralog LANO/LRRC1 Regulates Breast Cancer Stem Cell Fate through WNT/β-Catenin Signaling

    Get PDF
    Summary: Tumor initiation, progression, and therapeutic resistance have been proposed to originate from a subset of tumor cells, cancer stem cells (CSCs). However, the current understanding of the mechanisms involved in their self-renewal and tumor initiation capacity remains limited. Here, we report that expression of LANO/LRRC1, the vertebrate paralog of SCRIB tumor suppressor, is associated with a stem cell signature in normal and tumoral mammary epithelia. Through in vitro and in vivo experiments including a Lano/Lrrc1 knockout mouse model, we demonstrate its involvement in the regulation of breast CSC (bCSC) fate. Mechanistically, we demonstrate that Lano/LRRC1-depleted cells secrete increased levels of WNT ligands, which act in a paracrine manner to positively deregulate the WNT/β-catenin pathway in bCSCs. In addition to describing the first function of LANO/LRRC1, our results suggest that its expression level could be used as a biomarker to stratify breast cancer patients who could benefit from WNT/β-catenin signaling inhibitors. : In this article, Santoni and colleagues report that expression of LANO/LRRC1, the paralog of SCRIB tumor suppressor, is associated with normal and tumoral mammary stem cell signature. Lano/LRRC1 represses expansion of cancer stem cell pool through inhibition of WNT ligand secretion and related WNT/β-catenin pathway activation. LANO/LRRC1 might have theranostic value to steer patient treatment by WNT/β-catenin signaling inhibitors. Keywords: breast cancer, stem cell, LANO/LRRC1, SCRIB, Wnt/β-catenin, tumor suppresso

    The SCRIB Paralog LANO/LRRC1 Regulates Breast Cancer Stem Cell Fate through WNT/β-Catenin Signaling

    No full text
    Summary: Tumor initiation, progression, and therapeutic resistance have been proposed to originate from a subset of tumor cells, cancer stem cells (CSCs). However, the current understanding of the mechanisms involved in their self-renewal and tumor initiation capacity remains limited. Here, we report that expression of LANO/LRRC1, the vertebrate paralog of SCRIB tumor suppressor, is associated with a stem cell signature in normal and tumoral mammary epithelia. Through in vitro and in vivo experiments including a Lano/Lrrc1 knockout mouse model, we demonstrate its involvement in the regulation of breast CSC (bCSC) fate. Mechanistically, we demonstrate that Lano/LRRC1-depleted cells secrete increased levels of WNT ligands, which act in a paracrine manner to positively deregulate the WNT/β-catenin pathway in bCSCs. In addition to describing the first function of LANO/LRRC1, our results suggest that its expression level could be used as a biomarker to stratify breast cancer patients who could benefit from WNT/β-catenin signaling inhibitors. : In this article, Santoni and colleagues report that expression of LANO/LRRC1, the paralog of SCRIB tumor suppressor, is associated with normal and tumoral mammary stem cell signature. Lano/LRRC1 represses expansion of cancer stem cell pool through inhibition of WNT ligand secretion and related WNT/β-catenin pathway activation. LANO/LRRC1 might have theranostic value to steer patient treatment by WNT/β-catenin signaling inhibitors. Keywords: breast cancer, stem cell, LANO/LRRC1, SCRIB, Wnt/β-catenin, tumor suppresso

    Erbin suppresses KSR1-mediated RAS/RAF signaling and tumorigenesis in colorectal cancer

    No full text
    International audienceErbin belongs to the LAP (leucine-rich repeat and PDZ domain) family of scaffolding proteins that plays important roles in orchestrating cell signaling. Here, we show that Erbin functions as a tumor suppressor in colorectal cancer. Analysis of Erbin expression in colorectal cancer patient specimens revealed that Erbin was downregulated at both mRNA and protein levels in tumor tissues. Knockdown of Erbin disrupted epithelial cell polarity and increased cell proliferation in 3D culture. In addition, silencing Erbin resulted in increased amplitude and duration of signaling through Akt and RAS/RAF pathways. Erbin loss induced epithelial-mesenchymal transition, which coincided with a significant increase in cell migration and invasion. Erbin interacted with kinase suppressor of Ras 1 (KSR1) and displaced it from the RAF/MEK/ERK complex to prevent signal propagation. Furthermore, genetic deletion of Erbin in Apc knockout mice promoted tumorigenesis and significantly reduced survival. Tumor organoids derived from Erbin/Apc double knockoutmice displayed increased tumor initiation potential and activation of Wnt signaling. Results from gene set enrichment analysis revealed that Erbin expression associated positively with the E-cadherin adherens junction pathway and negatively with Wnt signaling in human colorectal cancer. Taken together, our study identifies Erbin as a negative regulator of tumor initiation and progression by suppressing Akt and RAS/RAF signaling in vivo. Significance: These findings establish the scaffold protein Erbin as a negative regulator of EMT and tumorigenesis in colorectal cancer through direct suppression of Akt and RAS/RAF signaling. (C) 2018 AACR
    corecore