25 research outputs found

    New Rapid Diagnostic Tests for Neisseria meningitidis Serogroups A, W135, C, and Y

    Get PDF
    BACKGROUND: Outbreaks of meningococcal meningitis (meningitis caused by Neisseria meningitidis) are a major public health concern in the African “meningitis belt,” which includes 21 countries from Senegal to Ethiopia. Of the several species that can cause meningitis, N. meningitidis is the most important cause of epidemics in this region. In choosing the appropriate vaccine, accurate N. meningitidis serogroup determination is key. To this end, we developed and evaluated two duplex rapid diagnostic tests (RDTs) for detecting N. meningitidis polysaccharide (PS) antigens of several important serogroups. METHODS AND FINDINGS: Mouse monoclonal IgG antibodies against N. meningitidis PS A, W135/Y, Y, and C were used to develop two immunochromatography duplex RDTs, RDT(1) (to detect serogroups A and W135/Y) and RDT(2) (to detect serogroups C and Y). Standards for Reporting of Diagnostic Accuracy criteria were used to determine diagnostic accuracy of RDTs on reference strains and cerebrospinal fluid (CSF) samples using culture and PCR, respectively, as reference tests. The cutoffs were 10(5) cfu/ml for reference strains and 1 ng/ml for PS. Sensitivities and specificities were 100% for reference strains, and 93.8%–100% for CSF serogroups A, W135, and Y in CSF. For CSF serogroup A, the positive and negative likelihood ratios (± 95% confidence intervals [CIs]) were 31.867 (16.1–63.1) and 0.065 (0.04–0.104), respectively, and the diagnostic odds ratio (± 95% CI) was 492.9 (207.2–1,172.5). For CSF serogroups W135 and Y, the positive likelihood ratio was 159.6 (51.7–493.3) Both RDTs were equally reliable at 25 °C and 45 °C. CONCLUSIONS: These RDTs are important new bedside diagnostic tools for surveillance of meningococcus serogroups A and W135, the two serogroups that are responsible for major epidemics in Africa

    Development and Evaluation of Two Simple, Rapid Immunochromatographic Tests for the Detection of Yersinia pestis Antibodies in Humans and Reservoirs

    Get PDF
    Plague is due to the bacterium Yersinia pestis. It is accidentally transmitted to humans by the bite of infected fleas. Currently, approximately 20 developing countries with very limited infrastructure are still affected. A plague case was defined according to clinical, epidemiological and biological features. Rapid diagnosis and surveillance of the disease are essential for its control. Indeed, the delay of treatment is often rapidly fatal for patients and outbreaks may occur. Bubo aspirate is the most appropriate specimen in case of bubonic plague, but its collection is not always feasible. The main current biological approaches for the diagnosis of human plague are F1 antigen detection, serology for antibody detection by ELISA and Y. pestis isolation. The biological diagnosis of plague remains a challenge because the clinical signs are not specific. In this study, we developed some simple, rapid and affordable tests able to detect specific plague antibodies. These tests can be used as alternative methods for plague diagnosis in the field and for plague surveillance

    Dipstick Test for Rapid Diagnosis of Shigella dysenteriae 1 in Bacterial Cultures and Its Potential Use on Stool Samples

    Get PDF
    International audienceBACKGROUND: We describe a test for rapid detection of S. dysenteriae 1 in bacterial cultures and in stools, at the bedside of patients. METHODOLOGY/PRINCIPAL FINDINGS: The test is based on the detection of S. dysenteriae 1 lipopolysaccharide (LPS) using serotype 1-specific monoclonal antibodies coupled to gold particles and displayed on a one-step immunochromatographic dipstick. A concentration as low as 15 ng/ml of LPS was detected in distilled water and in reconstituted stools in 10 minutes. In distilled water and in reconstituted stools, an unequivocal positive reaction was obtained with 1.6×10⁶ CFU/ml and 4.9×10⁶ CFU/ml of S. dysenteriae 1, respectively. Optimal conditions to read the test have been determined to limit the risk of ambiguous results due to appearance of a faint yellow test band in some negative samples. The specificity was 100% when tested with a battery of Shigella and unrelated strains in culture. When tested on 328 clinical samples in India, Vietnam, Senegal and France by laboratory technicians and in Democratic Republic of Congo by a field technician, the specificity (312/316) was 98.7% (95% CI:96.6-99.6%) and the sensitivity (11/12) was 91.7% (95% CI:59.8-99.6%). Stool cultures and the immunochromatographic test showed concordant results in 98.4 % of cases (323/328) in comparative studies. Positive and negative predictive values were 73.3% (95% CI:44.8-91.1%) and 99.7% (95% CI:98-100%). CONCLUSION: The initial findings presented here for a simple dipstick-based test to diagnose S. dysenteriae 1 demonstrates its promising potential to become a powerful tool for case management and epidemiological surveys

    Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes

    Get PDF
    A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage

    RDT Results by Serogroup

    No full text
    <p>Results of RDT<sub>1</sub> and RDT<sub>2</sub> are shown for each N. meningitidis serogroup.</p

    Predictive Values for N. meningitidis Diagnosis

    No full text
    <p>PVPs and NPVs for the diagnosis of N. meningitidis serogroup A (A) and serogroup W135 (B), according to prevalence. PVP is represented by the purple line with open circles, and NPV by the blue line with filled circles.</p

    Detailed Investigation of the Immunodominant Role of O-Antigen Stoichiometric O-Acetylation as Revealed by Chemical Synthesis, Immunochemistry, Solution Conformation and STD-NMR Spectroscopy for Shigella flexneri 3a

    No full text
    International audienceShigella flexneri 3a causes bacillary dysentery. Its O-antigen has the {2)-[α-d-Glcp-(1→3)]-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-[Ac→2]-α-l-Rhap-(1→3)-[Ac→6]≈40 % -ÎČ-d-GlcpNAc-(1→} ([(E)ABAc CAc D]) repeating unit, and the non-O-acetylated equivalent defines S. flexneri X. Propyl hepta-, octa-, and decasaccharides sharing the (E')A'BAc CD(E)A sequence, and their non-O-acetylated analogues were synthesized from a fully protected BAc CD(E)A allyl glycoside. The stepwise introduction of orthogonally protected mono- and disaccharide imidate donors was followed by a two-step deprotection process. Monoclonal antibody binding to twenty-six S. flexneri types 3a and X di- to decasaccharides was studied by an inhibition enzyme-linked immunosorbent assay (ELISA) and STD-NMR spectroscopy. Epitope mapping revealed that the 2C -acetate dominated the recognition by monoclonal IgG and IgM antibodies and that the BAc CD segment was essential for binding. The glucosyl side chain contributed to a lesser extent, albeit increasingly with the chain length. Moreover, tr-NOESY analysis also showed interaction but did not reveal any meaningful conformational change upon antibody binding

    Sensitivity and Specificity of a New Vertical Flow Rapid Diagnostic Test for the Serodiagnosis of Human Leptospirosis.

    Get PDF
    International audience: Background : Leptospirosis is a growing public health concern in many tropical and subtropical countries. However, its diagnosis is difficult because of non-specific symptoms and concurrent other endemic febrile diseases. In many regions, the laboratory diagnosis is not available due to a lack of preparedness and simple diagnostic assay or difficult access to reference laboratories. Yet, an early antibiotic treatment is decisive to the outcome. The need for Rapid Diagnostic Tests (RDTs) for bedside diagnosis of leptospirosis has been recognized. We developed a vertical flow immunochromatography strip RDT detecting anti-Leptospira human IgM and evaluated it in patients from New Caledonia, France, and French West Indies. Methodology/Principal Findings : Whole killed Leptospira fainei cells were used as antigen for the test line and purified human IgM as the control line. The mobile phase was made of gold particles conjugated with goat anti-human IgM. Standards for Reporting of Diagnostic Accuracy criteria were used to assess the performance of this RDT. The Microscopic Agglutination Test (MAT) was used as the gold standard with a cut-off titer of ≄400. The sensitivity was 89.8% and the specificity 93.7%. Positive and negative Likelihood Ratios of 14.18 and 0.108 respectively, and a Diagnostic Odds Ratio of 130.737 confirmed its usefulness. This RDT had satisfactory reproducibility, repeatability, thermal tolerance and shelf-life. The comparison with MAT evidenced the earliness of the RDT to detect seroconversion. When compared with other RDT, the Vertical Flow RDT developed displayed good diagnostic performances. CONCLUSIONS/SIGNIFICANCE: This RDT might be used as a point of care diagnostic tool in limited resources countries. An evaluation in field conditions and in other epidemiological contexts should be considered to assess its validity over a wider range of serogroups or when facing different endemic pathogens. It might prove useful in endemic contexts or outbreak situations

    Aldehyde perception induces specific molecular responses in Laminaria digitata and affects algal consumption by a specialist grazer

    No full text
    International audienceSUMMARY In the marine environment, distance signaling based on water‐borne cues occurs during interactions between macroalgae and herbivores. In the brown alga Laminaria digitata from North‐Atlantic Brittany, oligoalginates elicitation or grazing was shown to induce chemical and transcriptomic regulations, as well as emission of a wide range of volatile aldehydes, but their biological roles as potential defense or warning signals in response to herbivores remain unknown. In this context, bioassays using the limpet Patella pellucida and L. digitata were carried out for determining the effects of algal transient incubation with 4‐hydroxyhexenal (4‐HHE), 4‐hydroxynonenal (4‐HNE) and dodecadienal on algal consumption by grazers. Simultaneously, we have developed metabolomic and transcriptomic approaches to study algal molecular responses after treatments of L. digitata with these chemical compounds. The results indicated that, unlike the treatment of the plantlets with 4‐HNE or dodecadienal, treatment with 4‐HHE decreases algal consumption by herbivores at 100 ng.ml −1 . Moreover, we showed that algal metabolome was significantly modified according to the type of aldehydes, and more specifically the metabolite pathways linked to fatty acid degradation. RNAseq analysis further showed that 4‐HHE at 100 ng.ml −1 can activate the regulation of genes related to oxylipin signaling pathways and specific responses, compared to oligoalginates elicitation. As kelp beds constitute complex ecosystems consisting of habitat and food source for marine herbivores, the algal perception of specific aldehydes leading to targeted molecular regulations could have an important biological role on kelps/grazers interactions

    Development and Evaluation of a Dipstick Diagnostic Test for Neisseria meningitidis Serogroup X.

    No full text
    International audienceThe emergence of Neisseria meningitidis serogroup X (NmX) in the African meningitis belt has urged the development of diagnostic tools and vaccines for this serogroup, especially following the introduction of a conjugate vaccine against N. meningitidis serogroup A (NmA). We have developed and evaluated a new rapid diagnostic test (RDT) for detecting the capsular polysaccharide (cps) antigen of this emerging serogroup. Whole inactivated NmX bacteria were used to immunize rabbits. Following purification by affinity chromatography, the cpsX-specific IgG antibodies were utilized to develop an NmX-specific immunochromatography dipstick RDT. The test was validated against purified cpsX and meningococcal strains of different serogroups. Its performance was evaluated against that of PCR on a collection of 369 cerebrospinal fluid (CSF) samples obtained from patients living in countries within the meningitis belt (Cameroon, CĂŽte d'Ivoire, and Niger) or in France. The RDT was highly specific for NmX strains. Cutoffs of 10(5) CFU/ml and 1 ng/ml were observed for the reference NmX strain and purified cpsX, respectively. Sensitivity and specificity were 100% and 94%, respectively. A high agreement between PCR and RDT (Kappa coefficient, 0.98) was observed. The RDT gave a high positive likelihood ratio and a low negative likelihood (0.07), indicating almost 100% probability of declaring disease or not when the test is positive or negative, respectively. This unique NmX-specific test could be added to the available set of RDT for the detection of meningococcal meningitis in Africa as a major tool to reinforce epidemiological surveillance after the introduction of the NmA conjugate vaccine
    corecore