42 research outputs found

    29Si NMR and SAXS investigation of the hybrid organic-inorganic glasses obtained by consolidation of the melting gels

    Full text link
    This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65%MTES-35%DMDES. Following consolidation, the hybrid glasses were characterized using Raman, 29Si and 13C Nuclear Magnetic Resonance (NMR) spectroscopies, synchrotron Small Angle X-Ray Scattering (SAXS) and scanning electron microscopy (SEM). Raman spectroscopy revealed the presence of Si–C bonds in the hybrid glasses and 8-membered ring structures in the Si–O–Si network. Qualitative NMR spectroscopy identified the main molecular species, while quantitative NMR data showed that the ratio of trimers (T) to dimers (D) varied between 4.6 and 3.8. Two-dimensional 29Si NMR data were used to identify two distinct types of T3 environments. SAXS data showed that the glasses are homogeneous across the nm to micrometer length scales. The scattering cross section was one thousand times lower than what is expected when phase separation occurs. The SEM images show a uniform surface without defects, in agreement with the SAXS results, which further supports that the hybrid glasses are nonporous

    Local structures of polar wurtzites Zn_{1-x}Mg_{x}O studied by Raman and {67}Zn/{25}Mg NMR spectroscopies and by total neutron scattering

    Full text link
    Local compositions and structures of Zn_{1-x}Mg_{x}O alloys have been investigated by Raman and solid-state {67}Zn/{25}Mg nuclear magnetic resonance (NMR) spectroscopies, and by neutron pair-distribution-function (PDF) analyses. The E2(low) and E2(high) Raman modes of Zn_{1-x}Mg_{x}O display Gaussian- and Lorentzian-type profiles, respectively. At higher Mg substitutions, both modes become broader, while their peak positions shift in opposite directions. The evolution of Raman spectra from Zn_{1-x}Mg_{x}O solid solutions are discussed in terms of lattice deformation associated with the distinct coordination preferences of Zn and Mg. Solid-state magic-angle-spinning (MAS) NMR studies suggest that the local electronic environments of {67}Zn in ZnO are only weakly modified by the 15% substitution of Mg for Zn. {25}Mg MAS spectra of Zn_{0.85}Mg_{0.15}O show an unusual upfield shift, demonstrating the prominent shielding ability of Zn in the nearby oxidic coordination sphere. Neutron PDF analyses of Zn_{0.875}Mg_{0.125}O using a 2x2x1 supercell corresponding to Zn_{7}MgO_{8} suggest that the mean local geometry of MgO_{4} fragments concurs with previous density functional theory (DFT)-based structural relaxations of hexagonal wurtzite MgO. MgO_{4} tetrahedra are markedly compressed along their c-axes and are smaller in volume than ZnO_{4} units by ~6%. Mg atoms in Zn_{1-x}Mg_{x}O have a shorter bond to the cc-axial oxygen atom than to the three lateral oxygen atoms, which is distinct from the coordination of Zn. The precise structure, both local and average, of Zn_{0.875}Mg_{0.125}O obtained from time-of-flight total neutron scattering supports the view that Mg-substitution in ZnO results in increased total spontaneous polarization.Comment: 12 pages, 14 figures, 2 table

    New Insights into the Molecular Structures, Compositions, and Cation Distributions in Synthetic and Natural Montmorillonite Clays

    Get PDF
    International audienceWe present a detailed investigation of the molecular structure of montmorillonite, an aluminosilicate clay with important applications in materials sciences, such as for catalysis, drug delivery, or as a waste barrier. Solid-state 29Si, 27Al, 25Mg, and 1H nuclear magnetic resonance (NMR) measurements combined with density functional theory (DFT) calculations provide a comprehensive picture of the local structure and composition of a synthetic clay and its naturally-occurring analogue. A revised composition is proposed based on NMR results that allow the identification and quantification of the signatures of otherwise undetectable non-crystalline impurities, thus largely complementing the traditional elemental analyses. Solid-state 1H NMR at fast magic-angle spinning (MAS) and high magnetic field provide quantitative information on intra- and inter-layer local environments that are crucial for the determination of the amount of Mg/Al substitution within the octahedral layer. In combination with DFT calculations of energies, it suggests that pairs of adjacent Mg atoms are unfavorable, leading to a non-random cationic distribution within the layers

    Chemical Shift Correlations in Disordered Solids

    No full text
    International audienc

    Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals

    Get PDF
    International audienceBackground: Disordered compounds are crucially important for fundamental science and industrial applications. Yet most available methods to explore solid-state material properties require ideal periodicity, which, strictly speaking , does not exist in this type of materials. The supercell approximation is a way to imply periodicity to disordered systems while preserving " disordered " properties at the local level. Although this approach is very common, most of the reported research still uses supercells that are constructed " by hand " and ad-hoc. Results: This paper describes a software named supercell, which has been designed to facilitate the construction of structural models for the description of vacancy or substitution defects in otherwise periodically-ordered (crystalline) materials. The presented software allows to apply the supercell approximation systematically with an all-in-one implementation of algorithms for structure manipulation, supercell generation, permutations of atoms and vacancies, charge balancing, detecting symmetry-equivalent structures, Coulomb energy calculations and sampling output configurations. The mathematical and physical backgrounds of the program are presented, along with an explanation of the main algorithms and relevant technical details of their implementation. Practical applications of the program to different types of solid-state materials are given to illustrate some of its potential fields of application. Comparisons of the various algorithms implemented within supercell with similar solutions are presented where possible. Conclusions: The all-in-one approach to process point disordered structures, powerful command line interface, excellent performance, flexibility and GNU GPL license make the supercell program a versatile set of tools for disordered structures manipulations

    Locale structure around heteroatoms in alumino- and borosilicates for catalysis

    No full text
    En dépit de l importance considérable des matériaux alumino- et borosilicates pour la catalyse, l origine moléculaire de leur activité demeure mal comprise. Ceci tient à la difficulté de caractériser le désordre structural local généré au sein du réseau silicaté par l incorporation d hétéroatomes. Le caractère local de la résonance magnétique nucléaire (RMN) à l état solide en fait une technique adaptée pour résoudre cette question majeure. Les silicates en feuillés auto-assemblés en présence de surfactants sont d excellents systèmes modèles pour l étude de la structure locale autour d hétéroatomes de B ou d Al car la synthèse, la structure moléculaire et la signature RMN 29Si simple de leurs formes siliceuses sont parfaitement maîtrisées. L incorporation dans leurs réseaux silicatés de différentes quantités d Al ou de B et leurs conséquences ont été étudiées par des méthodologies avancées de RMN permettant de sonder les interactions à travers l espace ou les liaisons chimiques entre noyaux de 29Si, 27Al, 11B et/ou 1H, une approche qui peut être étendue à la substitution atomique dans une argile aluminosilicate et un nouveau borosilicate de calcium. Ces résultats ont été combinés à la modélisation moléculaire pour construire et valider des modèles structuraux capables de décrire les distorsions et les réarrangements parfois profonds du réseau résultant de la substitution. Cela a révélé des différences frappantes entre les conséquences de l incorporation d Al ou de B dans deux matériaux de morphologie semblables mais de structures moléculaires différentes, et offre une occasion unique de comprendre les propriétés régissant l incorporation d hétéroatomes dans les silicates.While alumino- and borosilicate materials have paramount importance in catalysis, the molecular origin of their activity is not completely understood. This is mainly because the incorporation of heteroatoms into the silicate framework deteriorates the molecular order by generating local disorder that is particularly difficult to establish. Because of its local vision of ordered and disordered environments, solid-state nuclear magnetic resonance (NMR) can play a key role to solve this long-standing issue. Surfactant-directed layered silicate materials with short-range molecular order are particularly interesting model systems to study the local structures around Al or B heteroatoms because the synthesis, molecular structures, and simple 29Si NMR signatures of their pure-silicate forms are well understood. Various amounts of Al and B atoms were incorporated into their frameworks, and their consequences on the local structure were investigated by state-of-the-art multidimensional NMR measurements probing spatial proximities or bonding interactions between 29Si, 11B, 27Al, and 1H nuclei, an approach that could be extended to atomic substitution in an aluminosilicate clay and a new calcium borosilicate. These results were combined with molecular modeling to build and evaluate structural models that capture the local framework distortions and sometimes profound rearrangements resulting from the atomic substitutions. This reveals remarkable differences between the consequences of the incorporation Al or B in two distinct frameworks of otherwise strongly-related materials, and offers a unique opportunity to understand the properties that drive heteroatom incorporation.ORLEANS-SCD-Bib. electronique (452349901) / SudocSudocFranceF

    Selective NMR Measurements of Homonuclear Scalar Couplings in Isotopically Enriched Solids

    No full text
    International audienc
    corecore