149 research outputs found

    Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability

    Get PDF
    In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller

    Do understory saplings respond to both light and below-ground competitio?: a field experiment in a north-eastern American hardwood forest and a literature review

    Get PDF
    A study was initiated in 1993 to evaluate the potential effects of both above- and below-ground competition exclusion on yellow birch (Betula alleghaniensis Britton), sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) sapling growth along an understory light gradient ranging from 3% to 50% of full sunlight. We compared four different growth variables between a control and a treatment (trenching and manual removal of nearby vegetation). Height growth, diameter growth, height over stem diameter ratio, and crown area varied with light availability in all three species, whereas trenching treatment had no significant effect. Our results show that light is the main factor affecting understory sapling growth following a selection cut in this northern hardwood forest, at least up to 50% full sunlight. The unresponsiveness of these three species to below-ground competition is discussed in relation to a literature review in which both soil richness and species functional ecology are considered

    In vivo and in situ rhizosphere respiration in Acer saccharum and Betula alleghaniensis seedlings grown in contrasting light regimes

    Get PDF
    A perfusive method combined with an open-system carbon dioxide measurement system was used to assess rhizosphere respiration of Acer saccharum Marsh. (sugar maple) and Betula alleghaniensis Britton (yellow birch) seedlings grown in 8-1 pots filled with coarse sand. We compared in vivo and in situ rhizosphere respiration between species, among light regimes (40, 17 and 6% of full daylight) and at different times during the day. To compute specific rhizosphere respiration, temperature corrections were made with either species-specific coefficients (Q10) based on the observed change in respiration rate between 15 and 21°C or an arbitrarily assigned Q10 of 2. Estimated, species-specific Q10 values were 3.0 and 3.4 for A. saccharum and B. alleghaniensis, respectively, and did not vary with light regime. Using either method of temperature correction, specific rhizosphere respiration did not differ either between A. saccharum and B. alleghaniensis, or among light regimes except in A. saccharum at 6% of full daylight. At this irradiance, seedlings were smaller than in the other light treatments, with a larger fine root fraction of total root dry mass, resulting in higher respiration rates. Specific rhizosphere respiration was significantly higher during the afternoon than at other times of day when temperature-corrected on the basis of an arbitrary Q10 of 2, suggesting the possibility of diurnal variation in a temperature-independent component of rhizosphere respiration

    Birch and conifer deadwood favour early establishment and shade tolerance in yellow birch juveniles growing on sugar maple dominated stands

    Get PDF
    Small-seeded tree species such as yellow birch (YB, Betula alleghaniensis Britt.) require deadwood or mineral soil for their establishment. Although much research has been done comparing YB germination on leaf litter vs. exposed mineral soil, less is known about deadwood as a seedbed and how different seedbeds affect YB early growth along light availability and size gradients. We examine how three common seedbeds (deadwood, moss cover on deadwood, and mineral soil) affected establishment and growth, biomass partitioning, and morphological traits of YB juveniles growing in the understory of temperate mixed deciduous and coniferous forests in southern Quebec. A total of 274 YB were sampled in four sugar maple (Acer saccharum Marsh.) dominated northern hardwood stands where selective cuts had been applied 6 and 15 years prior to sampling. Over 75% of the YB found on deadwood were on material of birch and conifer origin, although these species made less than 40% of the basal area. YB juveniles growing on deadwood showed traits that improve survival in shade such as reduced height growth for tall plants, higher efficiency in resource capture, and multilayered crowns. Our results demonstrate the importance of deadwood of birch and conifer origin in maintaining an abundant, natural, spatially well-distributed, and multistoried regeneration of YB.The authors are particularly grateful to I. Pratte, D. Schönig, A. Paquin, N. Bergeron, M. Messier, E. Messier, S. Carpentier, Y. Gauthier, and E. Mauri for their valuable help with the field and lab work. They also thank M. Mazerolle and S. Daigle for their assistance with statistical models. This work was funded by a MVRMF grant from the Ministry of Natural Resources of Quebec (MRNQ). J.-B. Lambert was also awarded with a Fonds de recherche du QuĂ©bec — Nature et technologies (FRQNT) scholarship

    Contrasting carbon allocation strategies of ring-porous and diffuse-porous species converge toward similar growth responses to drought

    Get PDF
    Extreme climatic events that are expected under global warming expose forest ecosystems to drought stress, which may affect the growth and productivity. We assessed intra-annual growth responses of trees to soil water content in species belonging to different functional groups of tree-ring porosity. We pose the hypothesis that species with contrasting carbon allocation strategies, which emerge from different relationships between wood traits and canopy architecture, display divergent growth responses to drought. We selected two diffuse-porous species (Acer saccharum and Betula alleghaniensis) and two ring-porous species (Quercus rubra and Fraxinus americana) from the mixed forest of Quebec (Canada). We measured anatomical wood traits and canopy architecture in eight individuals per species and assessed tree growth sensitivity to water balance during 2008–2017 using the standardized precipitation evapotranspiration index (SPEI). Stem elongation in diffuse-porous species mainly depended upon the total number of ramifications and hydraulic diameter of the tree-ring vessels. In ring-porous species, stem elongation mainly depended upon the productivity of the current year, i.e., number of vessels and basal area increment. Diffuse-porous and ring-porous species had similar responses to soil water balance. The effect of soil water balance on tree growth changed during the growing season. In April, decreasing soil temperature linked to wet conditions could explain the negative relationship between SPEI and tree growth. In late spring, greater water availability affected carbon partitioning, by promoting the formation of larger xylem vessels in both functional groups. Results suggest that timings and duration of drought events affect meristem growth and carbon allocation in both functional groups. Drought induces the formation of fewer xylem vessels in ring-porous species, and smaller xylem vessels in diffuse-porous species, the latter being also prone to a decline in stem elongation due to a reduced number of ramifications. Indeed, stem elongation of diffuse-porous species is influenced by environmental conditions of the previous year, which determine the total number of ramifications during the current year. Drought responses in different functional groups are thus characterized by different drivers, express contrasting levels of resistance or resilience, but finally result in an overall similar loss of productivity

    Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species

    Get PDF
    ‱ Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. ‱ Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. ‱ Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. ‱ No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance

    Plasticity plays a dominant role in regulating the phenological variations of sugar maple populations in Canada

    Get PDF
    Global changes affect the growing conditions of terrestrial ecosystems, causing a mismatch between plant phenology and local climates in Northern regions. Due to their long lifespan and irregular regeneration periods, trees cannot respond quickly enough to climate variability through long-term genetic adaptation. In this study, we explored the phenological plasticity and genetic variation among populations of bud burst in sugar maple (Acer saccharum Marsh.) seedlings from 30 Canadian provenances with contrasting climates planted in two common gardens near and at the northern limit of the species’ range. We tested the hypothesis that phenotypic plasticity and genetic variation among populations affect bud phenology. We expect that phenotypic plasticity is more important in regulating bud phenology due to the high variability in short-term weather events characterizing this part of North America. Bud development and leafing occurred in April–May, with complete bud burst lasting between 21 and 29  days. On average, bud swelling differed by 12  days between common gardens. Both factors site (common gardens) and provenance significantly affected bud burst, demonstrating phenological plasticity and genetic variation of sugar maple, respectively. A significant interaction between site and provenance was also found. Overall, the site (11.8–90.3%) contributed more than provenance (0–3.1%) to the variance in timings of bud burst, indicating a dominant role of plasticity in regulating spring phenology. Our study demonstrated the concurring effects of genetic variation and phenological plasticity of sugar maple and revealed the dominant role of the latter factor. The high plasticity observed in sugar maple has a crucial role in the phenological adaptation of maple and the survival of its local populations in a context of changing climate

    BAAD: a Biomass And Allometry Database for woody plants

    Get PDF
    Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub‐sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross‐section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the world\u27s vegetation
    • 

    corecore