81 research outputs found

    Metabolomics Identifies multiple candidate biomarkers to diagnose and stage human African trypanosomiasis

    Get PDF
    Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of “sleeping sickness”. Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control

    Access to prompt diagnosis: The missing link in preventing mental health disorders associated with neglected tropical diseases

    Get PDF
    Globally, there are an estimated 1 billion people suffering from at least one of the 20 neglected tropical diseases (NTDs) prioritized by the World Health Organization (WHO). Prevalent in tropical and subtropical regions, this group of NTDs comprises diverse diseases, including vector-borne parasitic diseases (such as human African trypanosomiasis [HAT], Chagas disease, and leishmaniasis), skin diseases caused by environmental bacteria (such as Buruli ulcer [BU]), foodborne parasitic diseases (such as taeniasis/cysticercosis) or snake bite envenoming, which—together with scabies and other ectoparasites, mycetoma, and deep mycoses—were recently added to the list [1]. Despite their differences, NTDs are synonymous with poverty, life-long disability, stigma, and discrimination, not to mention the lack of effective control tools such as vaccines, diagnostics, and drugs.S

    Health economic evaluation of strategies to eliminate gambiense human African trypanosomiasis in the Mandoul disease focus of Chad

    Get PDF
    Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic efficiency of the intensified strategy that was put in place in 2014 aimed at interrupting the transmission of gHAT, and we make recommendations on the best way forward based on both epidemiological projections and cost-effectiveness. In our analysis, we use a dynamic transmission model fit to epidemiological data from Mandoul to evaluate the cost-effectiveness of combinations of active screening, improved passive screening (defined as an expansion of the number of health posts capable of screening for gHAT), and vector control activities (the deployment of Tiny Targets to control the tsetse vector). For cost-effectiveness analyses, our primary outcome is disease burden, denominated in disability-adjusted life-years (DALYs), and costs, denominated in 2020 US.AlthoughactiveandpassivescreeninghaveenabledmorerapiddiagnosisandaccessibletreatmentinMandoul,theadditionofvectorcontrolprovidedgoodvalueformoney(atlessthan. Although active and passive screening have enabled more rapid diagnosis and accessible treatment in Mandoul, the addition of vector control provided good value-for-money (at less than 750/DALY averted) which substantially increased the probability of reaching the 2030 elimination target for gHAT as set by the World Health Organization. Our transmission modelling and economic evaluation suggest that the gains that have been made could be maintained by passive screening. Our analysis speaks to comparative efficiency, and it does not take into account all possible considerations; for instance, any cessation of ongoing active screening should first consider that substantial surveillance activities will be critical to verify the elimination of transmission and to protect against the possible importation of infection from neighbouring endemic foci

    Cost-effectiveness of using a rapid diagnostic test to screen for human African trypanosomiasis in the Democratic Republic of the Congo.

    No full text
    New rapid diagnostic tests (RDTs) for screening human African trypanosomiasis (HAT) have been introduced as alternatives to the card agglutination test for trypanosomiasis (CATT). One brand of RDT, the SD BIOLINE HAT RDT has been shown to have lower specificity but higher sensitivity than CATT, so to make a rational choice between screening strategies, a cost-effectiveness analysis is a key element. In this paper we estimate the relative cost-effectiveness of CATT and the RDT when implemented in the Democratic Republic of the Congo (DRC). Data on the epidemiological parameters and costs were collected as part of a larger study. These data were used to model three different diagnostic algorithms in mobile teams and fixed health facilities, and the relative cost-effectiveness was measured as the average cost per case diagnosed. In both fixed facilities and mobile teams, screening of participants using the SD BIOLINE HAT RDT followed by parasitological confirmation had a lower cost-effectiveness ratio than in algorithms using CATT. Algorithms using the RDT were cheaper by 112.54 (33.2%) and 88.54 (32.92%) US dollars per case diagnosed in mobile teams and fixed health facilities respectively, when compared with algorithms using CATT. Sensitivity analysis demonstrated that these conclusions were robust to a number of assumptions, and that the results can be scaled to smaller or larger facilities, and a range of prevalences. The RDT was the most cost-effective screening test in all realistic scenarios and detected more cases than CATT. Thus, on this basis, the SD BIOLINE HAT RDT could be considered as the most cost-effective option for use in routine screening for HAT in the DRC

    Accelerating elimination of sleeping sickness from the Guinean littoral through enhanced screening in the post-Ebola context: A retrospective analysis.

    No full text
    BackgroundActivities to control human African trypanosomiasis (HAT) in Guinea were severely hampered by the Ebola epidemic that hit this country between 2014 and 2016. Active screening was completely interrupted and passive screening could only be maintained in a few health facilities. At the end of the epidemic, medical interventions were progressively intensified to mitigate the risk of HAT resurgence and progress towards disease elimination.Methodology/principal findingsA retrospective analysis was performed to evaluate the medical activities that were implemented in the three most endemic prefectures of Guinea (Boffa, Dubreka and Forecariah) between January 2016 and December 2018. Passive screening using rapid diagnostic tests (RDTs) was progressively resumed in one hundred and one health facilities, and active screening was intensified by visiting individual households and performing RDTs, and by conducting mass screening in villages by mobile teams using the Card Agglutination Test for Trypanosomiasis. A total of 1885, 4897 and 8023 clinical suspects were tested in passive, while 5743, 14442 and 21093 people were actively screened in 2016, 2017 and 2018, respectively. The number of HAT cases that were diagnosed first went up from 107 in 2016 to 140 in 2017, then subsequently decreased to only 73 in 2018. A progressive decrease in disease prevalence was observed in the populations that were tested in active and in passive between 2016 and 2018.Conclusions/significanceIntensified medical interventions in the post-Ebola context first resulted in an increase in the number of HAT cases, confirming the fear that the disease could resurge as a result of impaired control activities during the Ebola epidemic. On the other hand, the decrease in disease prevalence that was observed between 2016 and 2018 is encouraging, as it suggests that the current strategy combining enhanced diagnosis, treatment and vector control is appropriate to progress towards elimination of HAT in Guinea

    Sensitivity of the tests.

    No full text
    <p>Points represent the estimates and lines the 95% CIs. Active and passive refer to active and passive screening.</p

    Serological tests for gambiense human African trypanosomiasis detect antibodies in cattle

    No full text
    Abstract Background Serological tests for gambiense human African trypanosomiasis (gHAT) detect antibodies to antigens on the cell surface of bloodstream trypanosomes. As trypanosomes that cause animal African trypanosomiasis (AAT) also express related antigens, we have evaluated two rapid diagnostic tests (RDTs) on cattle in trypanosomiasis endemic and non-endemic regions, to determine whether gHAT serological tests could also be used to screen for AAT. Methods Two RDTs, 1G RDT, made with native antigens, and p2G RDT, made with recombinant antigens, were tested on 121 cattle in a trypanosomiasis-free region, and on 312 cattle from a rhodesiense HAT and AAT endemic region. A subset of samples from the endemic region were also tested with two immune trypanolysis (TL) tests. The sensitivity of the tests was estimated by evaluating the result of the RDT on samples that were positive by both microscopy and internal transcribed spacer (ITS) PCR, whilst specificity was the result of the RDT on samples that were negative by ITS PCR and microscopy, and others from the non-endemic region. Results The specificity of the p2G RDT on cattle from the non-endemic region was 97.5% (95% CI: 93.0–99.2%), compared to only 57.9% (95% CI: 48.9–66.3%) for 1G RDT. The specificities of 1G RDT, p2G RDT and TL on endemic control cattle were 14.6% (95% CI: 9.7–21.5%), 22.6% (95% CI: 16.4–30.3%) and 68.3% (95% CI: 59.6–75.9%), respectively. The sensitivities of the tests on trypanosome positive samples were 85.1% (95% CI: 79.1–89.7%), 89.1% (95% CI: 83.7–93.0%) and 59.3% (95% CI: 51.8–66.4%), respectively. Among the same samples, 51.7% were positive by both TL and the 1G RDT. Conclusions These serological tests detect cross-reacting antibodies in cattle. The p2G RDT based on recombinant antigens had a high specificity in a non-endemic region, while the 1G RDT had a lower specificity, suggesting cross-reactivity with other pathogens
    corecore