648 research outputs found

    Relation Between Maternal Anthropometry and Infant Visual Recognition Memory

    Get PDF
    Infant visual recognition memory, a measure of attention, memory and information processing speed, predicts IQ, language and vocabulary. This study examined relationship between infant visual recognition memory and maternal anthropometry. Visual memory was assessed using a videotaped novelty preference paradigm. One-hundred infants 6-8 months of age in Ethiopia were presented with graphic stimuli. Duration of looks and shifts in looks between stimuli were coded from the tape by two independent teams and novelty preference was determined. Sixty-nine infants completed at least three novelty preference trials. Weights and heights of infants' mothers were collected, and their BMI was calculated. Relationship between maternal anthropometry and infant novelty preference measures were analyzed using correlations, ANOVA, and regression. Maternal height is positively correlated with infant weight-for-age z-score (r=0.207, p=0.039), infant length-for-age z-score (r=0.366, p=0.000), infant head circumference (r=0.199, p=0.048), and infant head circumference z-score (r=0.225, p=0.025). Statistical analysis did not show any consistent relationship between maternal anthropometry and infant novelty preference variables. Although maternal height and infant anthropometric measures were correlated, maternal anthropometry cannot be used as a predictor of infant novelty preference. This study is a part of a project funded by NIH grant #NIH 5 R21 TW006729.Department of Nutritional Science

    Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation

    Get PDF
    A post-tetanic membrane hyperpolarization following repetitive neuronal activity is a commonly observed phenomenon in the isolated frog spinal cord as well as in neurons of other nervous tissues. We have now used double-barrelled Na+- and K+-ion-sensitive microelectrodes to measure the intracellular Na+- and K+-concentrations and also the extracellular K+-concentration of lumbar spinal motoneurons during and after repetitive stimulation of a dorsal root. The results show that the posttetanic membrane hyperpolarization occurred at a time when the intracellular [Na+] reached its maximal value, intracellular [K+] had its lowest level and extracellular [K+] was still elevated. The hyperpolarization was blocked by ouabain and reduced by Li+. These data support the previous suggestion that an electrogenic Na+/K+ pump mode may be the mechanism underlying the post-tetanic membrane hyperpolarization

    Physiology of spontaneous [Ca2+]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus

    Get PDF
    AbstractThe magnocellular vasopressin (AVP) and oxytocin (OT) neurones exhibit specific electrophysiological behaviour, synthesise AVP and OT peptides and secrete them into the neurohypophysial system in response to various physiological stimulations. The activity of these neurones is regulated by the very same peptides released either somato-dendritically or when applied to supraoptic nucleus (SON) preparations in vitro. The AVP and OT, secreted somato-dendritically (i.e. in the SON proper) act through specific autoreceptors, induce distinct Ca2+ signals and regulate cellular events. Here, we demonstrate that about 70% of freshly isolated individual SON neurones from the adult non-transgenic or transgenic rats bearing AVP (AVP-eGFP) or OT (OT-mRFP1) markers, produce distinct spontaneous [Ca2+]i oscillations. In the neurones identified (through specific fluorescence), about 80% of AVP neurones and about 60% of OT neurones exhibited these oscillations. Exposure to AVP triggered [Ca2+]i oscillations in silent AVP neurones, or modified the oscillatory pattern in spontaneously active cells. Hyper- and hypo-osmotic stimuli (325 or 275 mOsmol/l) respectively intensified or inhibited spontaneous [Ca2+]i dynamics. In rats dehydrated for 3 or 5days almost 90% of neurones displayed spontaneous [Ca2+]i oscillations. More than 80% of OT-mRFP1 neurones from 3 to 6-day-lactating rats were oscillatory vs. about 44% (OT-mRFP1 neurones) in virgins. Together, these results unveil for the first time that both AVP and OT neurones maintain, via Ca2+ signals, their remarkable intrinsic in vivo physiological properties in an isolated condition

    Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron

    Get PDF
    Abstract: Magnetically labelled cells are used for in vivo cell tracking by MRI, used for the clinical translation of cell-base therapies. Studies involving magnetic labelled cells may include separation of labelled cells, targeted delivery and controlled release of drugs, contrast enhanced MRI and magnetic hyperthermia for the in situ ablation of tumours. Dextran-coated super-paramagnetic iron oxide (SPIO) ferumoxides are used clinically as an MR contrast agents primarily for hepatic imaging. The material is also widely used for in vitro cell labelling, as are other SPIO-based particles. Our results on the uptake by human cancer cell lines of ferumoxides indicate that electroporation in the presence of protamine sulphate (PS) results in rapid high uptake of SPIO nanoparticles (SPIONs) by parenchymal tumour cells without significant impairment of cell viability. Quantitative determination of cellular iron uptake performed by colorimetric assay is in agreement with data from the literature. These results on intracellular iron content together with the intracellular distribution of SPIONs by magnetic force microscopy (MFM) following in vitro uptake by parenchymal tumour cells confirm the potential of this technique for clinical tumour cell detection and destruction

    Segeth: A model of effective diffusion and tortuosity in the extracellular space of rat brain

    Get PDF
    Brain function is based on communication between individual cells. This communication utilizes small neurotransmitter and neuromodulator molecules, which are transported through extracellular space (ECS). Substances released into the ECS spread predominantly by diffusion because the ECS lacks any active transport mechanism. Because its structure exerts a direct influence on the intercellular signaling and also on transport of nutrients, metabolites and therapeutic agents Diffusion can be exploited experimentally to quantify two major structural parameters of the ECS, volume fraction and diffusion permeability Activation of noradrenergic system is known to cause wakefulness, increase vigilance and facilitate the transition of cortical activity from the sleep state to the awake state [5]. We measured ECS parameters in a visual region of the rat neocortical slices under control conditions and after activation of noradrenergic system by the noradrenergic agonist isoproterenol. Using the Real-Time Iontophoretic (RTI) method [1], we found that α decreased from 0.22 to 0.18 when isoproterenol was applied, suggesting that activation of noradrenergic receptors mimics the awake state in a brain slice. Next, we utilized this experimental paradigm as an in vitro model of sleep and awake brain states to study diffusive spread of molecules with small and high molecular weights in these states. To this end, we quantified diffusion of a small cation tetramethylammonium (MW 74) with the RTI method and fluorescently-labeled macromolecule dextran (MW 3000) with Integrative Optical Imaging method [6] in the visual neocortex both under the control conditions and after application of isoproterenol. Our preliminary results show that θ TMA remained constant (0.376 vs. 0.381) while θ dextran decreased (0.346 vs. 0.289) after the application of isoproterenol. In conclusion, our pilot study suggests that the diffusive spread of macromolecules in brain ECS is more restricted during the awake-like state than during the sleep-like state. This result has important implications for transport of growth factors, proteins and macromolecular therapeutics in brain ECS. References [1] C. Nicholson, J. Phillips: Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321, 225-257 (1981)

    The use of dopamine-hyaluronate associate-coated maghemite nanoparticles to label cells

    Get PDF
    Sodium hyaluronate (HA) was associated with dopamine (DPA) and introduced as a coating for maghemite (γ-Fe2O3) nanoparticles obtained by the coprecipitation of iron(II) and iron(III) chlorides and oxidation with sodium hypochlorite. The effects of the DPA anchorage of HA on the γ-Fe2O3 surface on the physicochemical properties of the resulting colloids were investigated. Nanoparticles coated at three different DPA-HA/γ-Fe2O3 and DPA/HA ratios were chosen for experiments with rat bone marrow mesenchymal stem cells and human chondrocytes. The nanoparticles were internalized into rat bone marrow mesenchymal stem cells via endocytosis as confirmed by Prussian Blue staining. The efficiency of mesenchymal stem cell labeling was analyzed. From among the investigated samples, efficient cell labeling was achieved by using DPA-HA-γ-Fe2O3 nanoparticles with DPA-HA/γ-Fe2O3 = 0.45 (weight/ weight) and DPA/HA = 0.038 (weight/weight) ratios. The particles were used as a contrast agent in magnetic resonance imaging for the labeling and visualization of cells

    Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: a systematic review

    Get PDF
    Background Granulocyte-colony stimulating factor (G-CSF) shows promise as a treatment for stroke. This systematic review assesses G-CSF in experimental ischaemic stroke. Methods Relevant studies were identified with searches of Medline, Embase and PubMed. Data were extracted on stroke lesion size, neurological outcome and quality, and analysed using Cochrane Review Manager using random effects models; results are expressed as standardised mean difference (SMD) and odds ratio (OR). Results Data were included from 19 publications incorporating 666 animals. G-CSF reduced lesion size significantly in transient (SMD -1.63, p4 weeks post ischaemia) was not (SMD 0.76, p=0.35). Death (OR 0.27, p<0.0001) was reduced with G-CSF. Median study quality was 4 (range 0-7/8); Egger’s test suggested significant publication bias (p=0.001). Conclusions G-CSF significantly reduced lesion size in transient but not permanent models of ischaemic stroke. Motor impairment and death were also reduced. Further studies assessing dose-response, administration time, length of ischaemia and long-term functional recovery are needed

    Transplantation of Neural Precursors Derived from Induced Pluripotent Cells Preserve Perineuronal Nets and Stimulate Neural Plasticity in ALS Rats.

    Get PDF
    A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) treatment is stem cell therapy. Neural progenitors derived from induced pluripotent cells (NP-iPS) might rescue or replace dying motoneurons (MNs). However, the mechanisms responsible for the beneficial effect are not fully understood. The aim here was to investigate the mechanism by studying the effect of intraspinally injected NP-iPS into asymptomatic and early symptomatic superoxide dismutase (SOD)1G93A transgenic rats. Prior to transplantation, NP-iPS were characterized in vitro for their ability to differentiate into a neuronal phenotype. Motor functions were tested in all animals, and the tissue was analyzed by immunohistochemistry, qPCR, and Western blot. NP-iPS transplantation significantly preserved MNs, slowed disease progression, and extended the survival of all treated animals. The dysregulation of spinal chondroitin sulfate proteoglycans was observed in SOD1G93A rats at the terminal stage. NP-iPS application led to normalized host genes expression (versican, has-1, tenascin-R, ngf, igf-1, bdnf, bax, bcl-2, and casp-3) and the protection of perineuronal nets around the preserved MNs. In the host spinal cord, transplanted cells remained as progenitors, many in contact with MNs, but they did not differentiate. The findings suggest that NP-iPS demonstrate neuroprotective properties by regulating local gene expression and regulate plasticity by modulating the central nervous system (CNS) extracellular matrix such as perineuronal nets (PNNs)

    A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury

    Get PDF
    Three different sources of human stem cells-bone marrow-derived mesenchymal stem cells (BM-MSCs), neural progenitors (NPs) derived from immortalized spinal fetal cell line (SPC-01), and induced pluripotent stem cells (iPSCs)-were compared in the treatment of a balloon-induced spinal cord compression lesion in rats. One week after lesioning, the rats received either BM-MSCs (intrathecally) or NPs (SPC-01 cells or iPSC-NPs, both intraspinally), or saline. The rats were assessed for their locomotor skills (BBB, flat beam test, and rotarod). Morphometric analyses of spared white and gray matter, axonal sprouting, and glial scar formation, as well as qPCR and Luminex assay, were conducted to detect endogenous gene expression, while inflammatory cytokine levels were performed to evaluate the host tissue response to stem cell therapy. The highest locomotor recovery was observed in iPSC-NP-grafted animals, which also displayed the highest amount of preserved white and gray matter. Grafted iPSC-NPs and SPC-01 cells significantly increased the number of growth-associated protein 43 (GAP43+) axons, reduced astrogliosis, downregulated Casp3 expression, and increased IL-6 and IL-12 levels. hMSCs transiently decreased levels of inflammatory IL-2 and TNF-alpha. These findings correlate with the short survival of hMSCs, while NPs survived for 2 months and matured slowly into glia- and tissue-specific neuronal precursors. SPC-01 cells differentiated more in astroglial phenotypes with a dense structure of the implant, whereas iPSC-NPs displayed a more neuronal phenotype with a loose structure of the graft. We concluded that the BBB scores of iPSC-NP- and hMSC-injected rats were superior to the SPC-01-treated group. The iPSC-NP treatment of spinal cord injury (SCI) provided the highest recovery of locomotor function due to robust graft survival and its effect on tissue sparing, reduction of glial scarring, and increased axonal sprouting

    Random walk with barriers: Diffusion restricted by permeable membranes

    Full text link
    Restrictions to molecular motion by barriers (membranes) are ubiquitous in biological tissues, porous media and composite materials. A major challenge is to characterize the microstructure of a material or an organism nondestructively using a bulk transport measurement. Here we demonstrate how the long-range structural correlations introduced by permeable membranes give rise to distinct features of transport. We consider Brownian motion restricted by randomly placed and oriented permeable membranes and focus on the disorder-averaged diffusion propagator using a scattering approach. The renormalization group solution reveals a scaling behavior of the diffusion coefficient for large times, with a characteristically slow inverse square root time dependence. The predicted time dependence of the diffusion coefficient agrees well with Monte Carlo simulations in two dimensions. Our results can be used to identify permeable membranes as restrictions to transport in disordered materials and in biological tissues, and to quantify their permeability and surface area.Comment: 8 pages, 3 figures; origin of dispersion clarified, refs adde
    • …
    corecore