849 research outputs found
Productivity of Florida Springs: final report to Biology Branch, Office of Naval Research progress from December 31, 1955 to May 31, 1956
CONTENTS: Factors that control species numbers in Silver Springs, by James L. Yount. Study of the biomass of parasites in the stumpknockers, by Wanda Hunter. Macrophytic communities in Florida inland waters, by Delle N. Swindale. Comment in retrospect, by Howard T. Odum. (15pp.
Symmetry considerations and development of pinwheels in visual maps
Neurons in the visual cortex respond best to rod-like stimuli of given
orientation. While the preferred orientation varies continuously across most of
the cortex, there are prominent pinwheel centers around which all orientations
a re present. Oriented segments abound in natural images, and tend to be
collinear}; neurons are also more likely to be connected if their preferred
orientations are aligned to their topographic separation. These are indications
of a reduced symmetry requiring joint rotations of both orientation preference
and the underl ying topography. We verify that this requirement extends to
cortical maps of mo nkey and cat by direct statistical analysis. Furthermore,
analytical arguments and numerical studies indicate that pinwheels are
generically stable in evolving field models which couple orientation and
topography
The Properties and Genesis of Four Middle Altitude Dystrandept Volcanic Ash Soils from Mauna Kea, Hawaii
Hawaii is one of the volcanic areas of the world.
Volcanic ash is widespread throughout the area,
and many soils contain ash as part of their parent
material. The soils derived from volcanic
ash contain predominantly amorphous mineral
colloids that have high chemical activity. The
Hydrol Humic Latosols on which sugarcane is
grown have received much study, but the volcanic
ash soils in the higher elevations have not.
This study provides information about these
soils located at higher elevations
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
Reorganization of columnar architecture in the growing visual cortex
Many cortical areas increase in size considerably during postnatal
development, progressively displacing neuronal cell bodies from each other. At
present, little is known about how cortical growth affects the development of
neuronal circuits. Here, in acute and chronic experiments, we study the layout
of ocular dominance (OD) columns in cat primary visual cortex (V1) during a
period of substantial postnatal growth. We find that despite a considerable
size increase of V1, the spacing between columns is largely preserved. In
contrast, their spatial arrangement changes systematically over this period.
While in young animals columns are more band-like, layouts become more
isotropic in mature animals. We propose a novel mechanism of growth-induced
reorganization that is based on the `zigzag instability', a dynamical
instability observed in several inanimate pattern forming systems. We argue
that this mechanism is inherent to a wide class of models for the
activity-dependent formation of OD columns. Analyzing one member of this class,
the Elastic Network model, we show that this mechanism can account for the
preservation of column spacing and the specific mode of reorganization of OD
columns that we observe. We conclude that neurons systematically shift their
selectivities during normal development and that this reorganization is induced
by the cortical expansion during growth. Our work suggests that cortical
circuits remain plastic for an extended period in development in order to
facilitate the modification of neuronal circuits to adjust for cortical growth.Comment: 8+13 pages, 4+8 figures, paper + supplementary materia
Chimera States for Coupled Oscillators
Arrays of identical oscillators can display a remarkable spatiotemporal
pattern in which phase-locked oscillators coexist with drifting ones.
Discovered two years ago, such "chimera states" are believed to be impossible
for locally or globally coupled systems; they are peculiar to the intermediate
case of nonlocal coupling. Here we present an exact solution for this state,
for a ring of phase oscillators coupled by a cosine kernel. We show that the
stable chimera state bifurcates from a spatially modulated drift state, and
dies in a saddle-node bifurcation with an unstable chimera.Comment: 4 pages, 4 figure
Pinwheel stabilization by ocular dominance segregation
We present an analytical approach for studying the coupled development of
ocular dominance and orientation preference columns. Using this approach we
demonstrate that ocular dominance segregation can induce the stabilization and
even the production of pinwheels by their crystallization in two types of
periodic lattices. Pinwheel crystallization depends on the overall dominance of
one eye over the other, a condition that is fulfilled during early cortical
development. Increasing the strength of inter-map coupling induces a transition
from pinwheel-free stripe solutions to intermediate and high pinwheel density
states.Comment: 10 pages, 4 figure
Coverage, Continuity and Visual Cortical Architecture
The primary visual cortex of many mammals contains a continuous
representation of visual space, with a roughly repetitive aperiodic map of
orientation preferences superimposed. It was recently found that orientation
preference maps (OPMs) obey statistical laws which are apparently invariant
among species widely separated in eutherian evolution. Here, we examine whether
one of the most prominent models for the optimization of cortical maps, the
elastic net (EN) model, can reproduce this common design. The EN model
generates representations which optimally trade of stimulus space coverage and
map continuity. While this model has been used in numerous studies, no
analytical results about the precise layout of the predicted OPMs have been
obtained so far. We present a mathematical approach to analytically calculate
the cortical representations predicted by the EN model for the joint mapping of
stimulus position and orientation. We find that in all previously studied
regimes, predicted OPM layouts are perfectly periodic. An unbiased search
through the EN parameter space identifies a novel regime of aperiodic OPMs with
pinwheel densities lower than found in experiments. In an extreme limit,
aperiodic OPMs quantitatively resembling experimental observations emerge.
Stabilization of these layouts results from strong nonlocal interactions rather
than from a coverage-continuity-compromise. Our results demonstrate that
optimization models for stimulus representations dominated by nonlocal
suppressive interactions are in principle capable of correctly predicting the
common OPM design. They question that visual cortical feature representations
can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
- …
