130 research outputs found

    Interfacial Micro-currents in Continuum-Scale Multi-Component Lattice Boltzmann Equation Hydrodynamics.

    Get PDF
    We describe, analyse and reduce micro-current effects in one class of lattice Boltzmann equation simulation method describing im-miscible fluids within the continuum approximation, due to Lishchuk et al. (Phys. Rev. E 67 036701 (2003)). This model's micro-current flow �field and associated density adjustment, when considered in the linear, low-Reynolds number regime, may be decomposed into independent, superposable contributions arising from various error terms in its immersed boundary force. Error force contributions which are rotational (solenoidal) are mainly responsible for the micro-current (corresponding density adjustment). Rotationally anisotropic error terms arise from numerical derivatives and from the sampling of the interface-supporting force. They may be removed, either by eliminating the causal error force or by negating it. It is found to be straightforward to design more effective stencils with significantly improved performance. Practically, the micro-current activity arising in Lishchuk's method is reduced by approximately three quarters by using an appropriate stencil and approximately by an order of magnitude when the effects of sampling are removed

    Persistence in a Stationary Time-series

    Full text link
    We study the persistence in a class of continuous stochastic processes that are stationary only under integer shifts of time. We show that under certain conditions, the persistence of such a continuous process reduces to the persistence of a corresponding discrete sequence obtained from the measurement of the process only at integer times. We then construct a specific sequence for which the persistence can be computed even though the sequence is non-Markovian. We show that this may be considered as a limiting case of persistence in the diffusion process on a hierarchical lattice.Comment: 8 pages revte

    Synchronization in a System of Globally Coupled Oscillators with Time Delay

    Full text link
    We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transitions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchronization frequency is manifested. Numerical simulations are also performed to give consistent results

    Dynamics of systems with isotropic competing interactions in an external field: a Langevin approach

    Full text link
    We study the Langevin dynamics of a ferromagnetic Ginzburg-Landau Hamiltonian with a competing long-range repulsive term in the presence of an external magnetic field. The model is analytically solved within the self consistent Hartree approximation for two different initial conditions: disordered or zero field cooled (ZFC), and fully magnetized or field cooled (FC). To test the predictions of the approximation we develop a suitable numerical scheme to ensure the isotropic nature of the interactions. Both the analytical approach and the numerical simulations of two-dimensional finite systems confirm a simple aging scenario at zero temperature and zero field. At zero temperature a critical field hch_c is found below which the initial conditions are relevant for the long time dynamics of the system. For h<hch < h_c a logarithmic growth of modulated domains is found in the numerical simulations but this behavior is not captured by the analytical approach which predicts a t1/2t^1/2 growth law at T=0T = 0

    Highly-ordered onion micelles made from amphiphilic highly-branched copolymers

    Get PDF
    Uniform onion micelles formed from up to ten nano-structured polymer layers were produced by the aqueous self-assembly of highly-branched copolymers. Highly-branched poly(alkyl methacrylate)s were chain extended with poly(acrylic acid) in a two-step reversible addition–fragmentation chain transfer-self-condensing vinyl polymerization (RAFT-SCVP) in solution. The resulting polymers were dispersed into water from oxolane (THF) using a self-organized precipitation-like method and the self-assembled particles were studied by phase-analysis light scattering, small-angle neutron scattering, and electron microscopy techniques. The relative hydrophobicity of the blocks was varied by changing the alkyl methacrylate (methyl, butyl, or lauryl) and this was found to affect the morphology of the particles. Only the poly(butyl methacrylate)-containing macromolecule formed an onion micelle structure. The formation of this morphology was observed to depend on: the evaporation of the good solvent (THF) during the self-assembly process causing kinetic trapping of structures; the pH of the aqueous phase; and also on the ratio of hydrophobic to hydrophilic segments within the copolymer. The lamellar structure could be removed by annealing the dispersion above the glass transition temperature of the poly(butyl methacrylate). To exemplify how these onion micelles can be used to encapsulate and release an active compound, a dye, rhodamine B (Rh B), was encapsulated and released. The release behaviour was dependent on the morphology of the particles. Particles formed containing the poly(methyl methacrylate) or poly(lauryl methacrylate) core did not form onions and although these materials absorbed Rh B, it was continuously released at room temperature. On the other hand, the lamellar structure formed from branch-poly(butyl methacrylate)-[poly(butyl methacrylate)-block-poly(acrylic acid)] allowed for encapsulation of approximately 45% of the dye, without release, until heating disrupted the lamellar structure

    Synchronization and resonance in a driven system of coupled oscillators

    Full text link
    We study the noise effects in a driven system of globally coupled oscillators, with particular attention to the interplay between driving and noise. The self-consistency equation for the order parameter, which measures the collective synchronization of the system, is derived; it is found that the total order parameter decreases monotonically with noise, indicating overall suppression of synchronization. Still, for large coupling strengths, there exists an optimal noise level at which the periodic (ac) component of the order parameter reaches its maximum. The response of the phase velocity is also examined and found to display resonance behavior.Comment: 17 pages, 3 figure

    Phase synchronization and noise-induced resonance in systems of coupled oscillators

    Full text link
    We study synchronization and noise-induced resonance phenomena in systems of globally coupled oscillators, each possessing finite inertia. The behavior of the order parameter, which measures collective synchronization of the system, is investigated as the noise level and the coupling strength are varied, and hysteretic behavior is manifested. The power spectrum of the phase velocity is also examined and the quality factor as well as the response function is obtained to reveal noise-induced resonance behavior.Comment: to be published in Phys. Rev.

    The use of sewage treatment works as foraging sites by insectivorous bats

    Get PDF
    Sewage treatment works with percolating filter beds are known to provide profitable foraging areas for insectivorous birds due to their association with high macroinvertebrate densities. Fly larvae developing on filter beds at sewage treatment works may similarly provide a valuable resource for foraging bats. Over the last two decades, however, there has been a decline in filter beds towards a system of “activated sludge”. Insects and bat activity were surveyed at 30 sites in Scotland employing these two different types of sewage treatment in order to assess the possible implications of these changes for foraging bats. Bat activity (number of passes) recorded from broad-band bat detectors was quantified at three points within each site. The biomass of aerial insects, sampled over the same period as the detector surveys, was measured using a suction trap. The biomass of insects and activity of Pipistrellus spp. was significantly higher at filter beds than at activated sludge sites. In addition, whilst foraging activity of Pipistrellus spp. at filter beds was comparable to that of adjacent “good” foraging habitat, foraging at activated sludge sites was considerably lower. This study indicates the high potential value of an anthropogenic process to foraging bats, particularly in a landscape where their insect prey has undergone a marked decline, and suggests that the current preference for activated sludge systems is likely to reduce the value of treatment works as foraging sites for bats

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
    • …
    corecore