2,136 research outputs found

    Electron Density and Electron Neutral Collision Frequency in the Ionosphere Using Plasma Impedance Probe Measurement

    Get PDF
    Swept Impedance Probe measurements in a sporadic E layer observed during the Sudden Atomic Layer (SAL) sounding rocket mission are analyzed to obtain absolute electron densities and electron neutral collision frequencies accurately. Three sets of upleg and downleg impedance data are selected for the analysis. Initial estimates of the plasma parameters are obtained through a least mean square fit of the measured impedance data against the analytical impedance formula ZB(f ) of Balmain (1969). These initial parameters are used as a starting point to drive a finite difference computational model of an antenna immersed in a plasma called PF-FDTD. The parameters are then tuned until a close fit is obtained between the measured impedance data and the numerical impedance data calculated by the PF-FDTD simulation. The electron densities obtained from the simulation were close to those obtained from the IRI 2001 model. The electron neutral collision frequencies obtained from the more accurate PF-FDTD simulation were up to 20% lower than the values predicted by Balmain’s formula. The obtained collision frequencies are also lower than the quiet time values predicted by Schunk and Nagy (2000) when used in conjunction with neutral densities and electron temperature from the Mass Spectrometer Incoherent Scatter Radar Extended-90 model

    A versatile and compact capacitive dilatometer

    Full text link
    We describe the design, construction, calibration, and operation of a relatively simple differential capacitive dilatometer suitable for measurements of thermal expansion and magnetostriction from 300 K to below 1 K with a low-temperature resolution of about 0.05 angstroms. The design is characterized by an open architecture permitting measurements on small samples with a variety of shapes. Dilatometers of this design have operated successfully with a commercial physical property measurement system, with several types of cryogenic refrigeration systems, in vacuum, in helium exchange gas, and while immersed in liquid helium (magnetostriction only) to temperatures of 30 mK and in magnetic fields to 45 T.Comment: 8 pages, incorporating 6 figures, submitted to Rev. Sci. Instru

    Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer

    Get PDF
    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100-200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R=282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-limited R=100 filter bank, appropriate for a line intensity mapping experiment targeting the [CII] 158 micron transition during the Epoch of ReionizationComment: 16 pages, 10 figures, Proceedings of the SPIE Astronomical Telescopes + Instrumentation 2014 Conference, Vol 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI

    Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)

    Get PDF
    Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software

    A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore

    Get PDF
    The function of chemical signalling in non-territorial solitary carnivores is still relatively unclear. Studies on territorial solitary and social carnivores have highlighted odour capability and utility, however the social function of chemical signalling in wild carnivore populations operating dominance hierarchy social systems has received little attention. We monitored scent marking and investigatory behaviour of wild brown bears Ursus arctos, to test multiple hypotheses relating to the social function of chemical signalling. Camera traps were stationed facing bear ‘marking trees’ to document behaviour by different age sex classes in different seasons. We found evidence to support the hypothesis that adult males utilise chemical signalling to communicate dominance to other males throughout the non-denning period. Adult females did not appear to utilise marking trees to advertise oestrous state during the breeding season. The function of marking by subadult bears is somewhat unclear, but may be related to the behaviour of adult males. Subadults investigated trees more often than they scent marked during the breeding season, which could be a result of an increased risk from adult males. Females with young showed an increase in marking and investigation of trees outside of the breeding season. We propose the hypothesis that females engage their dependent young with marking trees from a young age, at a relatively ‘safe’ time of year. Memory, experience, and learning at a young age, may all contribute towards odour capabilities in adult bears

    Behaviour of Solitary Adult Scandinavian Brown Bears (Ursus arctos) when Approached by Humans on Foot

    Get PDF
    Successful management has brought the Scandinavian brown bear (Ursus arctos L.) back from the brink of extinction, but as the population grows and expands the probability of bear-human encounters increases. More people express concerns about spending time in the forest, because of the possibility of encountering bears, and acceptance for the bear is decreasing. In this context, reliable information about the bear's normal behaviour during bear-human encounters is important. Here we describe the behaviour of brown bears when encountering humans on foot. During 2006–2009, we approached 30 adult (21 females, 9 males) GPS-collared bears 169 times during midday, using 1-minute positioning before, during and after the approach. Observer movements were registered with a handheld GPS. The approaches started 869±348 m from the bears, with the wind towards the bear when passing it at approximately 50 m. The bears were detected in 15% of the approaches, and none of the bears displayed any aggressive behaviour. Most bears (80%) left the initial site during the approach, going away from the observers, whereas some remained at the initial site after being approached (20%). Young bears left more often than older bears, possibly due to differences in experience, but the difference between ages decreased during the berry season compared to the pre-berry season. The flight initiation distance was longer for active bears (115±94 m) than passive bears (69±47 m), and was further affected by horizontal vegetation cover and the bear's age. Our findings show that bears try to avoid confrontations with humans on foot, and support the conclusions of earlier studies that the Scandinavian brown bear is normally not aggressive during encounters with humans

    Effect of forest canopy structure on wintertime Land Surface Albedo: Evaluating CLM5 simulations with in-situ measurements

    Get PDF
    Land Surface Albedo (LSA) of forested environments continues to be a source of uncertainty in land surface modeling, especially across seasonally snow covered domains. Assessment and improvement of global scale model performance has been hampered by the contrasting spatial scales of model resolution and in-situ LSA measurements. In this study, point-scale simulations of the Community Land Model 5.0 (CLM5) were evaluated across a large range of forest structures and solar angles at two climatically different locations. LSA measurements, using an uncrewed aerial vehicle with up and down-looking shortwave radiation sensors, showed canopy structural shading of the snow surface exerted a primary control on LSA. Diurnal patterns of measured LSA revealed strong effects of both azimuth and zenith angles, neither of which were adequately represented in simulations. In sparse forest environments, LSA were overestimated by up to 66%. Further analysis revealed a lack of correlation between Plant Area Index (PAI), the primary canopy descriptor in CLM5, and measured LSA. Instead, measured LSA showed considerable correlation with the fraction of snow visible in the sensor's field of view, a correlation which increased further when only considering the sunlit fraction of visible snow. The use of effective PAI values as a simple first-order correction for the discrepancy between measured and simulated LSA in sparse forest environments substantially improved model results (64%–76% RMSE reduction). However, the large biases suggest the need for a more generic solution, for example, by introducing a canopy metric that represents canopy gap fraction rather than assuming a spatially homogeneous canopy
    corecore