286 research outputs found

    The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    Get PDF
    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping

    Semiparametrically Efficient Inference Based on Signs and Ranks for Median Restricted Models

    Get PDF
    Since the pioneering work of Koenker and Bassett (1978), econometric models involving median and quantile rather than the classical mean or conditional mean concepts have attracted much interest.Contrary to the traditional models where the noise is assumed to have mean zero, median-restricted models enjoy a rich group-invariance structure.In this paper, we exploit this invariance structure in order to obtain semiparametrically efficient inference procedures for these models.These procedures are based on residual signs and ranks, and therefore insensitive to possible misspecification of the underlying innovation density, yet semiparametrically efficient at correctly specified densities.This latter combination is a definite advantage of these procedures over classical quasi-likelihood methods.The techniques we propose can be applied, without additional technical difficulties, to both cross-sectional and time-series models.They do not require any explicit tangent space calculation nor any projections on these.

    The prevalence of nutritional anemia in pregnancy in an east Anatolian province, Turkey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anemia is considered a severe public health problem by World Health Organization when anemia prevalence is equal to or greater than 40% in the population. The purpose of this study was to determine the anemia prevalence with the associated factors in pregnant women and to determine the serum iron, folate and B12 vitamin status in anaemic pregnants in Malatya province.</p> <p>Methods</p> <p>This is a cross-sectional survey. A multi-sage stratified probability-proportional-to-size cluster sampling methodology was used. A total of 823 pregnant women from sixty clusters were studied. Women were administered a questionnaire related with the subject and blood samples were drawn. Total blood count was performed within four hours and serum iron, folate and B12 vitamin were studied after storing sera at -20 C for six months.</p> <p>Results</p> <p>Anemia prevalence was 27.1% (Hb < 11.0 gr/dl). Having four or more living children (OR = 2.2), being at the third trimester (OR = 2.3) and having a low family income (OR = 1.6) were determined as the independent predictors of anemia in pregnancy. Anemia was also associated with soil eating (PICA) in the univariate analysis (p < 0.05). Of anaemic women, 50.0% had a transferrin saturation less than 10% indicating iron deficiency, 34.5% were deficient in B12 vitamin and 71.7% were deficient in folate. Most of the anemias were normocytic-normochromic (56.5%) indicating mixed anemia.</p> <p>Conclusions</p> <p>In Malatya, for pregnant women anemia was a moderate public health problem. Coexisting of iron, folate and B vitamin deficiencies was observed among anaemics. To continue anemia control strategies with reasonable care and diligence was recommended.</p

    Magnetic resonance imaging for lung cancer detection: Experience in a population of more than 10,000 healthy individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent refinements of lung MRI techniques have reduced the examination time and improved diagnostic sensitivity and specificity. We conducted a study to assess the feasibility of MRI for the detection of primary lung cancer in asymptomatic individuals.</p> <p>Methods</p> <p>A retrospective chart review was performed on images of lung parenchyma, which were extracted from whole-body MRI examinations between October 2000 and December 2007. 11,766 consecutive healthy individuals (mean age, 50.4 years; 56.8% male) were scanned using one of two 1.5-T scanners (Sonata and Sonata Maestro, Siemens Medical Solutions, Erlangen, Germany). The standard protocol included a quick whole-lung survey with T2-weighted 2-dimensional half Fourier acquisition single shot turbo spin echo (HASTE) and 3-dimensional volumetric interpolated breath-hold examination (VIBE). Total examination time was less than 10 minutes, and scanning time was only 5 minutes. Prompt referrals and follow-ups were arranged in cases of suspicious lung nodules.</p> <p>Results</p> <p>A total of 559 individuals (4.8%) had suspicious lung nodules. A total of 49 primary lung cancers were diagnosed in 46 individuals: 41 prevalence cancers and 8 incidence cancers. The overall detection rate of primary lung cancers was 0.4%. For smokers aged 51 to 70 years, the detection rate was 1.4%. TNM stage I disease accounted for 37 (75.5%). The mean size of detected lung cancers was 1.98 cm (median, 1.5 cm; range, 0.5-8.2 cm). The most histological types were adenocarcinoma in 38 (77.6%).</p> <p>Conclusion</p> <p>Rapid zero-dose MRI can be used for lung cancer detection in a healthy population.</p

    Solution-processed blue/deep blue and white phosphorescent organic light emitting diodes (PhOLEDs) hosted by a polysiloxane derivative with pendant mCP (1, 3-bis(9-carbazolyl)benzene)

    Get PDF
    The synthesis and characterization is reported of an efficient polysiloxane derivative containing the 1,3-bis(9-carbazolyl)benzene (mCP) moiety as a pendant unit on the polysiloxane backbone. In comparison with mCP, the mCP-polysiloxane hybrid (PmCPSi) has significantly improved thermal and morphological stabilities with a high decomposition temperature (Td = 523 °C) and glass transition temperature (Tg = 194 °C). The silicon–oxygen linkage of PmCPSi prevents intermolecular π-stacking and ensures a high triplet energy level (ET = 3.0 eV). Using PmCPSi as a host, blue phosphorescent organic light emitting devices (PhOLEDs) effectively confine triplet excitons, with efficient energy transfer to the guest emitter and a relatively low turn-on voltage of 5.8 V. A maximum external quantum efficiency of 9.24% and maximum current efficiency of 18.93 cd/A are obtained. These values are higher than for directly analogous poly(vinylcarbazole) (PVK) based devices (6.76%, 12.29 cd/A). Good color stability over a range of operating voltages is observed. A two-component “warm-white” device with a maximum current efficiency of 10.4 cd/A is obtained using a blend of blue and orange phosphorescent emitters as dopants in PmCPSi host. These results demonstrate that well-designed polysiloxane derivatives are highly efficient hosts suitable for low-cost solution-processed PhOLEDs

    Evaluation of lung MDCT nodule annotation across radiologists and methods

    Get PDF
    RATIONALE AND OBJECTIVES: Integral to the mission of the National Institutes of Health–sponsored Lung Imaging Database Consortium is the accurate definition of the spatial location of pulmonary nodules. Because the majority of small lung nodules are not resected, a reference standard from histopathology is generally unavailable. Thus assessing the source of variability in defining the spatial location of lung nodules by expert radiologists using different software tools as an alternative form of truth is necessary. MATERIALS AND METHODS: The relative differences in performance of six radiologists each applying three annotation methods to the task of defining the spatial extent of 23 different lung nodules were evaluated. The variability of radiologists’ spatial definitions for a nodule was measured using both volumes and probability maps (p-map). Results were analyzed using a linear mixed-effects model that included nested random effects. RESULTS: Across the combination of all nodules, volume and p-map model parameters were found to be significant at P < .05 for all methods, all radiologists, and all second-order interactions except one. The radiologist and methods variables accounted for 15% and 3.5% of the total p-map variance, respectively, and 40.4% and 31.1% of the total volume variance, respectively. CONCLUSION: Radiologists represent the major source of variance as compared with drawing tools independent of drawing metric used. Although the random noise component is larger for the p-map analysis than for volume estimation, the p-map analysis appears to have more power to detect differences in radiologist-method combinations. The standard deviation of the volume measurement task appears to be proportional to nodule volume

    Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL

    Get PDF
    We present the results of two exploratory parsimony analyses of DNA sequences from 475 and 499 species of seed plants, respectively, representing all major taxonomic groups. The data are exclusively from the chloroplast gene rbcL, which codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO or RuBPCase). We used two different state-transformation assumptions resulting in two sets of cladograms: (i) equal-weighting for the 499-taxon analysis; and (ii) a procedure that differentially weights transversions over transitions within characters and codon positions among characters for the 475-taxon analysis. The degree of congruence between these results and other molecular, as well as morphological, cladistic studies indicates that rbcL sequence variation contains historical evidence appropriate for phylogenetic analysis at this taxonomic level of sampling. Because the topologies presented are necessarily approximate and cannot be evaluated adequately for internal support, these results should be assessed from the perspective of their predictive value and used to direct future studies, both molecular and morphological. In both analyses, the three genera of Gnetales are placed together as the sister group of the flowering plants, and the anomalous aquatic Ceratophyllum (Ceratophyllaceae) is sister to all other flowering plants. Several major lineages identified correspond well with at least some recent taxonomic schemes for angiosperms, particularly those of Dahlgren and Thorne. The basalmost clades within the angiosperms are orders of the apparently polyphyletic subclass Magnoliidae sensu Cronquist. The most conspicuous feature of the topology is that the major division is not monocot versus dicot, but rather one correlated with general pollen type: uniaperturate versus triaperturate. The Dilleniidae and Hamamelidae are the only subclasses that are grossly polyphyletic; an examination of the latter is presented as an example of the use of these broad analyses to focus more restricted studies. A broadly circumscribed Rosidae is paraphyletic to Asteridae and Dilleniidae. Subclass Caryophyllidae is monophyletic and derived from within Rosidae in the 475-taxon analysis but is sister to a group composed of broadly delineated Asteridae and Rosidae in the 499-taxon study

    DNA Methylation Changes in Atypical Adenomatous Hyperplasia, Adenocarcinoma In Situ, and Lung Adenocarcinoma

    Get PDF
    BACKGROUND:Aberrant DNA methylation is common in lung adenocarcinoma, but its timing in the phases of tumor development is largely unknown. Delineating when abnormal DNA methylation arises may provide insight into the natural history of lung adenocarcinoma and the role that DNA methylation alterations play in tumor formation. METHODOLOGY/PRINCIPAL FINDINGS:We used MethyLight, a sensitive real-time PCR-based quantitative method, to analyze DNA methylation levels at 15 CpG islands that are frequently methylated in lung adenocarcinoma and that we had flagged as potential markers for non-invasive detection. We also used two repeat probes as indicators of global DNA hypomethylation. We examined DNA methylation in 249 tissue samples from 93 subjects, spanning the putative spectrum of peripheral lung adenocarcinoma development: histologically normal adjacent non-tumor lung, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS, formerly known as bronchioloalveolar carcinoma), and invasive lung adenocarcinoma. Comparison of DNA methylation levels between the lesion types suggests that DNA hypermethylation of distinct loci occurs at different time points during the development of lung adenocarcinoma. DNA methylation at CDKN2A ex2 and PTPRN2 is already significantly elevated in AAH, while CpG islands at 2C35, EYA4, HOXA1, HOXA11, NEUROD1, NEUROD2 and TMEFF2 are significantly hypermethylated in AIS. In contrast, hypermethylation at CDH13, CDX2, OPCML, RASSF1, SFRP1 and TWIST1 and global DNA hypomethylation appear to be present predominantly in invasive cancer. CONCLUSIONS/SIGNIFICANCE:The gradual increase in DNA methylation seen for numerous loci in progressively more transformed lesions supports the model in which AAH and AIS are sequential stages in the development of lung adenocarcinoma. The demarcation of DNA methylation changes characteristic for AAH, AIS and adenocarcinoma begins to lay out a possible roadmap for aberrant DNA methylation events in tumor development. In addition, it identifies which DNA methylation changes might be used as molecular markers for the detection of preinvasive lesions
    corecore