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Abstract

Since the pioneering work of Koenker and Bassett (1978), econometric models in-

volving median and quantile rather than the classical mean or conditional mean con-

cepts have attracted much interest. Contrary to the traditional models where the noise

is assumed to have mean zero, median-restricted models enjoy a rich group-invariance

structure. In this paper, we exploit this invariance structure in order to obtain semi-

parametrically efficient inference procedures for these models. These procedures are

based on residual signs and ranks, and therefore insensitive to possible misspecifica-

tion of the underlying innovation density, yet semiparametrically efficient at correctly

specified densities. This latter combination is a definite advantage of these procedures

over classical quasi-likelihood methods. The techniques we propose can be applied,

without additional technical difficulties, to both cross-sectional and time-series models.

They do not require any explicit tangent space calculation nor any projections on these.
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1 Introduction

In their seminal 1978 paper, Koenker and Bassett provided an extension to L1-estimators

for median-regression models of the classical results on L2-estimation in the standard condi-

tional mean setup. Since then, an enormous literature has been devoted to inference prob-

lems in median (and other quantile) restricted regression models. The median-regression

model considered in Koenker and Bassett (1978) is

Y = XTθθθ + ε, (1.1)

where ε has zero median density f and is independent of X. This specification (1.1) however

is still too restrictive in a number of econometric applications, and has been extended

in several semi- and nonparametric directions. Restricting attention to models with i.i.d.

observations on (Y,X), the fully nonparametric median regression model aims at estimating

the conditional median m(X) (m unspecified) of Y given X. The first results in this

direction are in Stute (1986) where, via a Donsker-type invariance property, asymptotic

normality of a nonparametric conditional quantile estimator of the nearest-neighbor type

is established. Other approaches have been used since (for instance, Bhattacharya and

Gangopadhyay, 1990), but the nonparametric specification leads to nonparametric, i.e.,

slower than
√

n, rates of convergence.

In an intermediate semiparametric specification, one imposes

Y = m(X;θθθ) + ε, (1.2)

where ε, conditionally on X, has median zero, and m is specified. The parameter of interest

is θθθ, and the nuisance parameter is the unknown conditional density of ε given X. In these

semiparametric models,
√

n-rate inference, in general, is possible for the parameter θθθ. For

instance, Sherman (1993) proves
√

n-consistency and asymptotic normality for Han (1987)’s

maximum correlation estimator. These results even extend to the case where one does not

observe Y , but some monotone increasing (not necessarily bijective) transformation D(Y ).

In a hypothesis testing context, Horowitz and Spokoiny (2002) provide a rate-optimal test

for the hypothesis that a conditional median is linear in the explanatory variables.
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The advantage of the aforementioned semiparametric approaches is that they allow for

arbitrary dependence (e.g., heteroskedasticity) between the innovations ε and the explana-

tory variables X. However, as usual for non-adaptive models, this generality comes at a

cost of reduced efficiency: semiparametric efficiency is strictly smaller than parametric ef-

ficiency. Moreover, classical semiparametric inference procedures in these models, as far as

we know, all need some form of nonparametric estimation in order to attain semiparametric

efficiency bounds. In the present paper, we impose the more restrictive condition that either

the innovations ε are independent of the explanatory variables X, or that some parametric

form of heteroskedasticity can be specified, i.e., ε = σ(X;θθθ)η with η independent of X

and σ(·, ·) known. We show that these models have in common a strong group-invariance

structure, which allows to base semiparametric inference procedures (estimators and tests)

on residual signs and ranks.

These sign-and-rank procedures enjoy
√

n-consistency rates and many other desirable

properties. First, they can be constructed in order to achieve semiparametric optimality

(i.e., attain the semiparametric efficiency bound) at some preselected density f . Second

(but no less important), they are distribution-free, so that their distributional properties are

the same under any density g as under g = f . In a hypothesis testing context, this means

that the resulting tests, while reaching semiparametric efficiency under density f , remain

valid (same size) under arbitrary density g. Highly desirable robustness and efficiency

properties thus are combined within a single statistic. A third advantage of our procedures

is their simplicity: they do not require smoothing of any form, nor techniques such as

sample splitting. This again is a consequence of the fact that we specify statistics for

a fixed preselected reference density f , rather than estimating the actual density. We

will come back to this point shortly. A fourth advantage of our procedures is that they

do not require any regularity conditions for the actual underlying density, and very little

regularity conditions for the reference density f—mainly, a Local Asymptotic Normality

(LAN) condition. This LAN condition is needed since we rely on the convergence under f of

our statistical experiments to standard Gaussian shifts in order to substantiate our claims

of semiparametric efficiency (in the Hájek-Le Cam framework) at f ; this LAN condition is

widely accepted in the statistics and econometrics literature as a condition for “regularity”
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of models. This assumption excludes models with non-smooth parametrization as threshold

models and models with non-stationary data. Extension of our results to these cases does

not seem trivial. Our results do readily extend to time series models. Zhou and Liang (2000

and 2003) contain results on nonparametric kernel-type estimates of conditional medians for

dependent processes. As mentioned before, we are interested in semiparametric inference

about θθθ and observations may come from standard time series models like ARMA and

GARCH models.

Our approach appears as a natural alternative to quasi-likelihood methods. Both our

method and the QML method rely on the choice of a reference density f which needs not

be the actual density g. However, while the QML method is restricted to a very particular

choice of the reference density f (the double-exponential density often will do the job in

median restricted location models, but no other density will), our newly proposed method

can be based on any zero median reference density f , subject to weak regularity conditions.

To illustrate this point, consider an applied researcher facing a median restricted model,

for which a QML method based on a double-exponential reference density indeed provides
√

n-consistent inference under a wide class of densities g. If she thinks that another density,

h, say, gives a better description of reality, the researcher faces an unpleasant choice. One

possibility is to stick to the double-exponential reference density f with the advantage

of
√

n-consistent inference, even if the actual density g does not coincide with f , but

with reduced efficiency. Alternatively, she may use the density h which is thought to

provide a more accurate description of reality, but which generally leads to inconsistent

inference in case the actual density g differs from h. (a notable exception is the case

where the model is adaptive, but none of the models we will discuss in the present paper

is.) However, using our sign-and-rank based method, she can combine the best of two

worlds. The inference procedure can safely be applied preselecting the density h as reference

density. If this density is indeed correctly specified, semiparametric efficiency is achieved,

while the inference procedure remains distribution-free and, consequently, robust to possible

misspecification of the density.

This paper mainly deals with the construction of sign-and-rank statistics with the afore-

mentioned properties. In fact, we show how to reconstruct the central sequences in the
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so-called most difficult parametric submodel, based on signs and ranks of the innovations.

These versions of the central sequences can subsequently be used to build inference pro-

cedures (estimates and tests) as in Le Cam and Yang (1990), Section 5.3, or in Bickel et

al. (1993), Section 2.5.

The remainder of this paper is organized as follows. In the next section, we introduce, in

a general setting, the innovation structure that is used in models specified through median

restrictions. We give some elementary statistical properties and extend a representation the-

orem for sign-and-rank statistics of Hallin, Vermandele, and Werker (2003). In Section 3

we study the behavior of sign-and-rank statistics that are based on parametrically efficient

inference procedures. We show how these statistics behave, both when the underlying inno-

vation density is correctly specified (Theorem 3.1) and when it is not (Theorem 3.2). These

results are subsequently used in Section 4 to show that sign-and-rank statistics at correctly

specified innovation density attain the semiparametric efficiency bound. We illustrate our

results throughout by means of a simple median regression and a median autoregression

model. In Section 5 we give several other examples. Proofs are gathered in the Appendix.

2 Sign-and-rank statistics

Let P0 denote the set of all probability distributions on the real line IR that are absolutely

continuous with respect to the Lebesgue measure and have median zero. We denote by F0

the corresponding set of densities, i.e.,

F0 :=
{

f : IR → [0,∞) :
∫ 0

−∞
f(z)dz =

∫ ∞

0
f(z)dz =

1
2

}
. (2.1)

Writing IRn for the n-dimensional Euclidean space and Bn for the (completed) Borel

sigma-field on this space, we consider the sequence of statistical experiments

E(n)
ε :=

(
IRn,Bn,P(n)

ε := {IPn : IP ∈ P0}
)

, n ∈ IN, (2.2)

of n i.i.d. random variables εεε(n) :=
(
ε
(n)
t

)n

t=1
with density f ∈ F0. Writing IPf for the

distribution on the real line with density f , we may also write P(n)
ε =

{
IPn

f : f ∈ F0

}
.

At the moment, we consider observations εεε(n) :=
(
ε
(n)
t

)n

t=1
from E(n)

ε . In Section 3,

we will consider the more common and more relevant situation where εεε(n) =
(
ε
(n)
t

)n

t=1
are
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unobserved innovations in some model for observables Y(n) :=
(
Y

(n)
t

)n

t=1
.

Let R(n) :=
(
R

(n)
1 , . . . , R

(n)
n

)T
denote the vector of ranks associated with ε

(n)
1 , . . . , ε

(n)
n

and let s
(n)
1 , . . . , s

(n)
n denote their signs, i.e., s

(n)
t := sign(ε(n)

t ). Moreover, define N
(n)
+ :=

#{t : s
(n)
t = 1} as the number of positive variables among ε

(n)
1 , . . . , ε

(n)
n and N

(n)
− :=

#{t : s
(n)
t = −1} as the number of negative ones. Given our assumption that the dis-

tribution of ε
(n)
t is absolutely continuous, we clearly have N

(n)
+ + N

(n)
− = n (a.s.). It

is well-known that the vector of ranks
(
R

(n)
1 , . . . , R

(n)
n

)
is stochastically independent of

N(n) := (N (n)
+ , N

(n)
− ). The following result is easily established and provides a theoretical

justification for considering signs and ranks in this context (see, e.g., Lehmann 1986, page

315).

Lemma 2.1 The σ-field

SR(n) := σ
((

R
(n)
t , s

(n)
t

)n

t=1

)
= σ ((Rt)

n
t=1) ∨ σ

(
N

(n)
+

)
(2.3)

generated by the ranks and the signs is maximal invariant for the group

G(n), ◦ :=
{
G(n)

h

∣∣∣∣h : IR → IR continuous, monotone ↑, h(0) = 0, lim
x→±∞h(x) = ±∞

}
, ◦

of order-preserving transformations (x1, . . . , xn) 7−→ G(n)
h (x1, . . . , xn) := (h(x1), . . . , h(xn)).

The central message of the present paper is that semiparametrically efficient inference

procedures, in median restricted models, can be obtained easily (i.e., without, for instance,

calculating tangent spaces and imposing many regularity conditions) by using statistics

that are based on signs and ranks, i.e., that are SR(n)-measurable. Note that the sigma-

field generated by R
(n)
t and s

(n)
t , for given and fixed t, is not the same as the sigma-field

generated by R
(n)
t and N

(n)
+ . Indeed, the knowledge of R

(n)
t and N

(n)
+ implies the knowledge

of s
(n)
t , but the knowledge of R

(n)
t and s

(n)
t does not imply the knowledge of N

(n)
+ . Let us

define the statistics of interest in this paper.

Definition 2.2 A (linear) sign-and-rank statistic of order k, k = 0, 1, . . . , n − 1, for the

experiment E(n)
ε , is a statistic of the form

S(n)
k :=

1
n− k

n∑

t=k+1

C(n)
t a(n)

k

(
N

(n)
+ ;R(n)

t , . . . , R
(n)
t−k

)
, (2.4)
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where
(
C(n)

t

)n

t=1
are given regression matrices and a(n)

k is a given IRp-valued score function

defined over the set {0, . . . , n} × {all (k + 1)-tuples of distinct integers in {1, . . . , n}}.

Such statistics are called serial or non-serial according as k > 0 or k = 0. Hallin et

al. (2003) give a detailed representation theorem for the asymptotic behavior of statistics

of the form (2.4) in the non-serial case k = 0 and the serial case with C(n)
t = I, the identity

matrix, t = 1, . . . , n. The purpose of this section is to establish an asymptotic representa-

tion results for statistics of the general form (2.4) which will be essential in constructing

semiparametrically efficient inference procedures in Section 3. The key ingredient in this

representation theorem is the notion of a score-generating function which we introduce now.

Let E(n)
f denote expectation under IP(n)

f (expectation under IPn
f of distribution-free quan-

tities however will be denoted by E(n) rather than by E(n)
f ), and write F for the cumulative

distribution function corresponding to f . Finally, let εεε
(n)
(·) :=

(
ε
(n)
(t)

)n

t=1
denote the vector of

order statistics of εεε(n).

Definition 2.3 A square-integrable function ϕϕϕk : (0, 1)k+1 → IRp is a score-generating

function for the score function a(n)
k in the sign-and-rank statistic (2.4) if, for all f ∈ F0,

E(n)
f

[∥∥∥a(n)
k

(
N

(n)
+ ; R(n)

1 , . . . , R
(n)
k+1

)
−ϕϕϕk

(
F (ε(n)

1 ), . . . , F (ε(n)
k+1)

)∥∥∥
2
∣∣∣∣εεε

(n)
(·)

]
= oIP(1), (2.5)

under IP(n)
f , as n →∞.

Observe that, by the rule of iterated expectations, a sufficient condition for (2.5) to hold is

that

E(n)
f

[∥∥∥a(n)
k

(
N

(n)
+ ; R(n)

1 , . . . , R
(n)
k+1

)
−ϕϕϕk

(
F (ε(n)

1 ), . . . , F (ε(n)
k+1)

)∥∥∥
2
∣∣∣∣ N

(n)
+

]
= oIP(1)

under IP(n)
f , as n →∞.

The following two propositions are in the vein of Hájek’s Projection Theorem, and ex-

tend some of the detailed representation results of Hallin et al. (2003). Note that they cover

both the serial and the non-serial case. This generality will be necessary when considering

dynamic models with exogenous explanatory variables, as we will see in Section 5.
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Proposition 2.4 Let ϕϕϕk : (0, 1)k+1 → IRp be a score-generating function for the score

function a(n)
k in the sign-and-rank statistic S(n)

k in (2.4). Assume that the regression ma-

trices C(n)
t satisfy

C̄(n) :=
1

n− k

n∑

t=k+1

C(n)
t = O(1) and

1
n

n∑

t=1

C(n)
t

[
C(n)

t

]T
= O(1),

as n →∞. Define the statistic

T(n)
ϕk;f ;k :=

1
n− k

n∑

t=k+1

C(n)
t ϕϕϕk

(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)
, (2.6)

and let

ϕϕϕ∗k(u0, . . . , uk) := ϕϕϕk(u0, . . . , uk) (2.7)

−
k∑

l=0

E [ϕϕϕk(U0, . . . , Uk)|Ul = u0] + kE [ϕϕϕk(U0, . . . , Uk)] ,

where U0, . . . , Uk are i.i.d. random variables uniformly distributed over [0, 1]. Then, under

IPn
f , as n →∞,

S(n)
k − E(n)

[
S(n)

k

∣∣∣ N (n)
+

]
= T(n)

ϕϕϕk;f ;k − E(n)
f

[
T

(n)
ϕϕϕk;f ;k

∣∣∣εεε(n)
(·)

]
+ oIP(n−1/2), (2.8)

and S(n)
k admits the asymptotic representation

S(n)
k − E(n)

[
S(n)

k

∣∣∣ N (n)
+

]
=

1
n− k

n∑

t=k+1

(
C(n)

t − C̄(n)
)

ϕϕϕk

(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)
(2.9)

+
C̄(n)

n− k

n∑

t=k+1

ϕϕϕ∗k
(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)
+ oIP(n−1/2).

This proposition allows for studying the asymptotic behavior of the sign-and-rank statis-

tic S(n)
k conditional on the number N

(n)
+ of positive signs in the vector εεε(n). The asymptotic

results we need, however, are the unconditional ones. If, in addition to the conditions of

Proposition 2.4, we assume that the scores a(n)
k are the so-called exact scores associated

with ϕϕϕk, that is, if

a(n)
k (n+; r0, . . . , rk):= E(n)

f

[
ϕϕϕk

(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)∣∣∣ N (n)
+ = n+; R(n)

t = r0, . . . , R
(n)
t−k= rk

]
,

(2.10)

the following proposition establishes the unconditional behavior of S(n)
k . In order not to

overload the paper, we only consider this exact score case here. Under extra regularity
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conditions on the function ϕϕϕk, similar results also hold under the weaker assumption that

ϕϕϕk is simply a score-generating function for a(n)
k (the approximate scores case); these results

are easily derived by combining the results below with those of Hallin et al. (2003).

Proposition 2.5 In addition to the conditions of Proposition 2.4, assume that the scores

a(n)
k are the exact scores defined in (2.10). Define the function ϕ̄ϕϕk : {−1, 1}k+1 → IRp by

ϕ̄ϕϕk (s0, . . . , sk) := E(n)
f

[
ϕϕϕk

(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)∣∣∣ sign(ε(n)
t ) = s0, . . . , sign(ε(n)

t−k) = sk

]

= 2k+1
∫ (3+s0)/4

u0=(1+s0)/4
· · ·

∫ (3+sk)/4

uk=(1+sk)/4
ϕϕϕk (u0, . . . , uk) du0 · · · duk,

and the constant vector ϕ̄ϕϕk by

ϕ̄ϕϕk := 4
∑

(s0,...,sk)∈{−1,1}k+1

ϕ̄ϕϕk (s0, . . . , sk)
#{l : sl = 1} − (k + 1)/2

2k+1
.

Then, under IPn
f , as n →∞, we have

E(n)
[
S(n)

k

∣∣∣ N (n)
+

]
− E(n)

[
S(n)

k

]
=


N

(n)
+

n
− 1

2


 C̄(n)ϕ̄ϕϕk + oIP(n−1/2), (2.11)

and, consequently,

S(n)
k − E(n)

[
S(n)

k

]
=

1
n− k

n∑

t=k+1

(
C(n)

t − C̄(n)
)

ϕϕϕk

(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)

+
C̄(n)

n− k

n∑

t=k+1

ϕϕϕ∗k
(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)
(2.12)

+


N

(n)
+

n
− 1

2


 C̄(n)ϕ̄ϕϕk + oIP(n−1/2).

Proposition 2.5 gives a representation of sign-and-rank statistics in terms of sums of

i.i.d. random variables (clearly, (N (n)
+ /n − 1/2) = (2n)−1 ∑n

t=1 sign(ε(n)
t )). Under suitable

conditions on the regression matrices, one easily derives a normal limiting distribution for

these statistics. Note, however, that the representation as such is obtained under minimal

conditions. To illustrate Proposition 2.5, consider the so-called non-serial case, i.e., k = 0,

for p = 1. In this case we write ϕ = ϕ0 and impose
∫ 1
0 ϕ(u)du = 0 so that ϕ̄(−1) =

2
∫ 1/2
0 ϕ(u)du = −ϕ̄(1). Consequently, ϕ̄ = ϕ̄0 = −ϕ̄(−1) + ϕ̄(1) = 2ϕ̄(1) and, since
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ϕ∗ = 0,

S
(n)
0 =

1
n

n∑

t=1

(
c
(n)
t − c̄(n)

)
ϕ

(
F

(
ε
(n)
t

))
+ 2c̄(n)ϕ̄(1)


N

(n)
+

n
− 1

2


 + oIP(n−1/2).

The key assumption underlying Propositions 2.4 and 2.5 is the existence of a score-

generating function ϕϕϕk for a(n)
k . Often, however, one is interested in finding a function a(n)

k

with a given score generating function ϕϕϕk. This occurs, e.g., if one is interested in con-

structing sign-and-rank statistics with a particular asymptotic behavior. More specifically,

we propose below to use the parametrically efficient score function (i.e., the derivative of

the log-likelihood contribution of a single observation in some time-series or cross-sectional

model) as the score-generating function. The main contribution of the present paper is that

such a choice leads to semiparametrically efficient inference at correctly specified reference

density f in the semiparametric model E(n)
y below, without any tangent space calculation,

and with the additional benefits of distribution-free sign-and-rank-based inference. This

main result is formalized in Theorem 4.1 below.

3 Sign-and-rank statistics based on parametric scores

Hallin and Werker (2003) show, in a general setting, that there is an intimate relationship

between group invariance and semiparametric efficiency. That paper focusses on rank-

based statistics in semiparametric models where some completely unrestricted innovation

density plays the role of a nuisance. However, their results suggest that the fact that SR(n)

constitutes the maximal invariant σ-field for the median-restricted model E(n)
ε (Lemma 2.1)

can be used to construct semiparametrically efficient inference procedures in these models.

In the present and the next section we investigate this in detail and conclude that sign-and-

rank statistics based on parametrically efficient (i.e., likelihood-based) scores, automatically

yield semiparametrically efficient inference procedures. More precisely, such procedures are

robust against misspecification of the innovation density, while attaining the semiparametric

efficiency bound when the density is correctly specified. For expository reasons, we consider

a simple regression model as a running example. Other more interesting and more relevant

examples are discussed in the next section. We start by describing the semiparametric
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model of interest.

The general class of models we consider is constructed using an invertible transformation

T (n)
θθθ , depending on a Euclidean parameter of interest θθθ ∈ ΘΘΘ ⊆ IRp, and possibly also on

some initial conditions or exogenous variables Y
(n)
0 , of an i.i.d. sequence of innovations

(
ε
(n)
1 , . . . , ε

(n)
n

)
. Formally, we introduce the mapping

T (n)
θθθ :

(
ε
(n)
1 , . . . , ε(n)

n ; Y (n)
0

)
7−→

(
Y

(n)
1 , . . . , Y (n)

n

)
, (3.1)

and we assume that we observe Y
(n)
0 and

(
Y

(n)
1 , . . . , Y

(n)
n

)
= T (n)

θθθ

(
ε
(n)
1 , . . . , ε

(n)
n ;Y (n)

0

)
.

The parameter of interest is θθθ ∈ ΘΘΘ, but the density f ∈ F0 of the innovations (ε(n)
1 , . . . ε

(n)
n )

constitutes an infinite dimensional nuisance parameter. Our model is thus semiparametric

in nature. Formally, the sequence of experiments we are considering is

E(n)
y :=

(
IRn,Bn,P(n)

y =
{
IP(n)

θθθ,f := IPn
f T (n)

θθθ

←
: θθθ ∈ ΘΘΘ, f ∈ F0

})
, (3.2)

where T ← denotes the inverse of the transformation T . The measures IP(n)
θθθ,f are the condi-

tional probability measures of
(
Y

(n)
1 , . . . , Y

(n)
n

)
given Y

(n)
0 , where the fact that Y

(n)
0 contains

only initial values and/or exogenous variables is formalized by the condition that the dis-

tribution of Y
(n)
0 does not depend on either θθθ ∈ ΘΘΘ or f ∈ F0. Finally, we assume that the

transformation T (n)
θθθ is invertible (given Y

(n)
0 ), i.e., given observed values Y

(n)
0 , Y

(n)
1 , . . . , Y

(n)
n

and given a parameter value θθθ ∈ ΘΘΘ, we may calculate
(
ε
(n)
1 (θθθ), . . . , ε(n)

n (θθθ)
)

:= T (n)
θθθ

← (
Y

(n)
1 , . . . , Y (n)

n ; Y (n)
0

)
. (3.3)

Example 3.1 Consider a sequence X
(n)
1 , . . . , X

(n)
n of real-valued exogenous variables and a

sequence ε
(n)
1 , . . . , ε

(n)
n of i.i.d. zero median random innovations. We observe

(
Y

(n)
1 , . . . , Y

(n)
n

)
,

where

Y
(n)
t = θX

(n)
t + ε

(n)
t , t = 1, . . . , n. (3.4)

If we put Y
(n)
0 =

(
X

(n)
1 , . . . , X

(n)
n

)
and

T (n)
θ (ε(n)

1 , . . . , ε(n)
n ;Y (n)

0 ) :=
(
θX

(n)
1 + ε

(n)
1 , . . . , θX(n)

n + ε(n)
n

)
,

hence

T (n)
θθθ

← (
Y

(n)
1 , . . . , Y (n)

n ; Y (n)
0

)
=

(
Y

(n)
1 − θX

(n)
1 , . . . , Y (n)

n − θX(n)
n

)
,

the model fits exactly in the setup of this section. ¤
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Example 3.2 Autoregressive models are another example fitting into the above setup.

For simplicity, we restrict to AR(1) models; more general dynamic models are treated in

Section 5. In the AR(1) model, one observes
(
Y

(n)
0 , . . . , Y

(n)
n

)
, where

Y
(n)
t = θY

(n)
t−1 + ε

(n)
t , t = 1, . . . , n, (3.5)

θ ∈ Θ := (−1, 1),
(
ε
(n)
1 , . . . , ε

(n)
n

)
are i.i.d. innovations with density f ∈ F0, and Y

(n)
0 is

exogenous. Then, letting

T (n)
θ (ε(n)

1 , . . . , ε(n)
n ; Y (n)

0 ) :=

(
θY

(n)
0 + ε

(n)
1 , . . . ,

t−1∑

i=0

θiε
(n)
t−i + θtY

(n)
0 , . . . ,

n−1∑

i=0

θiε
(n)
n−i + θnY

(n)
0

)
,

we have

T (n)
θθθ

← (
Y

(n)
1 , . . . , Y (n)

n ; Y (n)
0

)
=

(
Y

(n)
1 − θY

(n)
0 , . . . , Y (n)

n − θY
(n)
n−1

)
,

¤

As mentioned before, the goal of the present paper is to show that suitably constructed

sign-and-rank statistics in the model described are semiparametrically efficient. We will use

the local and asymptotic efficiency concept as introduced by Hájek and Le Cam. Follow-

ing their approach, we impose that the parametric model associated with given innovation

density f satisfies the Uniform Local Asymptotic Normality (ULAN) condition:

Condition (ULAN). We assume that, for some fixed f ∈ F0, the sequence of (para-

metric) experiments E(n)
y (f) =

(
IRn,Bn,P(n)

y (f) =
{
IP(n)

θθθ,f = IPn
f T (n)

θθθ

←
: θθθ ∈ΘΘΘ

})
is Uni-

formly Locally Asymptotically Normal (ULAN) in the parameter of interest θθθ ∈ ΘΘΘ, with a

central sequence of the form

∆∆∆(n)
θθθ,f =

1√
n− k

n∑

t=k+1

C(n)
t (Y (n)

0 )ϕϕϕ(k)
f

(
F

(
ε
(n)
t (θθθ)

)
, . . . , F

(
ε
(n)
t−k(θθθ)

))
, (3.6)

where ϕϕϕ
(k)
f is a square-integrable function and C(n)

t are given functions, and with Fisher

information If (θθθ). Hence, under IP(n)
θθθ,f and as n → ∞, ∆∆∆(n)

θθθ,f
L−→ N (0, If (θθθ)). Moreover,

we assume the central sequence (3.6) to form a martingale difference sequence, i.e., for all

u1, . . . , uk ∈ (0, 1), ∫ 1

0
ϕϕϕ

(k)
f (u0, u1, . . . , uk)du0 = 0, (3.7)

12



and the regression matrices are assumed to satisfy, as n →∞, for some non-stochastic C̄,

C̄(n) :=
1

n− k

n∑

t=k+1

C(n)
t (Y (n)

0 ) IP−→ C̄.

¤

This local asymptotic normality condition is by now widely accepted as the standard

framework for the asymptotic analysis of “regular” statistical models. It essentially implies

that the model under study is close (in the appropriate, local and asymptotic, sense) to

a simple model where one observes a single observation from a multivariate normal dis-

tribution with known variance, the unknown mean of which is the parameter of interest.

This model is known as the Gaussian shift model. Jeganathan (1995) gives an accessible

summary of the main results in this literature. Note that we have imposed the so-called

uniform LAN condition (ULAN). This condition imposes uniformity in the LAN condition

over
√

n-neighborhoods. For the derivation of asymptotic Cramér-Rao type lower bounds

on the behavior of estimators via the convolution theorem, this uniformity is not required.

However, for the construction of inference procedures with desirable properties, this uni-

formity is necessary. It is important to note that ULAN is equivalent to LAN plus some

asymptotic linearity property of the central sequence (see, e.g., Bickel et al., 1993).

As for the martingale difference condition (3.7), it is not standardly imposed in (U)LAN

conditions. However, to the best of our knowledge, it is satisfied in essentially all locally

and asymptotically normal models studied so far in the literature. We use this condition

later to get simple asymptotic representations of the sign-and-rank statistics based on the

parametric score function ϕϕϕ
(k)
f .

Example 3.1 (continued). In the regression model we consider, Condition (ULAN) holds if

the innovation density f is absolutely continuous with finite Fisher information for location,

i.e., if If :=
∫
(f ′/f)2dF < ∞ and 1

n

∑n
t=1

(
X

(n)
t

)2 IP−→ m2
X > 0. Under these conditions,

the central sequence takes the form

∆(n)
θ,f =

1√
n

n∑

t=1

−f ′

f

(
ε
(n)
t (θ)

)
X

(n)
t

L−→ N (0, Ifm2
X), (3.8)

13



where ε
(n)
t (θ) = Y

(n)
t − θX

(n)
t . Consequently, we have k = 0, ϕ

(0)
f (u) =

(
(−f ′/f)◦F−1

)
(u),

and the matrices C(n)
t (Y (n)

0 ) reduce to scalars: c
(n)
t (Y (n)

0 ) = X
(n)
t . The martingale difference

condition on the terms in the central sequence is clear satisfied, since
∫ 1

0
ϕ

(0)
f (u)du = −

∫ ∞

−∞
f ′(z)dz = 0.

¤

Standard as it is, Condition (ULAN) with central sequence of the form (3.6) is too

restrictive for autoregressive models, unless the “memory” or “lag” parameter k is allowed

to increase with n.

Example 3.2 (continued). Assuming, as in Example 3.1, that f is absolutely contin-

uous with finite Fisher information for location If , but assuming also that the variance

σ2
ε of the innovation is finite, it is well known (Swensen 1985, Kreiss 1987, or Drost et

al. 1997; note that the fact that Ef (ε(n)
t ) 6= 0 does not play any role in that respect), that

Condition (ULAN) holds with (univariate) central sequence

∆(n)
θ,f =

1√
n

n∑

t=1

−f ′

f
(ε(n)

t (θ))Y (n)
t−1 =

1√
n

n−1∑

i=1

θi−1
n∑

t=i+1

−f ′

f
(ε(n)

t (θ))ε(n)
t−i(θ), (3.9)

where ε
(n)
t (θ) := Y

(n)
t − θY

(n)
t−1 (for notational simplicity we put Y

(n)
0 = 0), and with infor-

mation If

1−θ2 m2
ε with m2

ε := Ef (ε(n)
t )2. It follows that, for any sequence (k(n)) such that

k(n) < n− 1 and k(n) ↑ ∞,

∆(n)
k(n),θ,f :=

1√
n

k(n)∑

i=1

θi−1
n∑

t=i+1

−f ′

f
(ε(n)

t (θ))ε(n)
t−i(θ), (3.10)

which under IP(n)
θ,f differs from (3.9) by a oIP(1) quantity, is still a central sequence.

This central sequence involves unbounded lags, and therefore does not have the re-

quired form (3.6). However, observe that, for all n, ∆(n)
k(n),θ,f is a linear combination, with

exponentially decreasing coefficients mεI
1/2
f θi−1

√
(n− i)/n, of k(n) mutually uncorrelated

statistics of the form
√

n− i r
(n)
f ;i , where

r
(n)
f ;i = r

(n)
f ;i (θ) :=

1

(n− i)mεI
1/2
f

n∑

t=i+1

−f ′

f
(ε(n)

t (θ))ε(n)
t−i(θ). (3.11)
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Each statistic
√

n− i r
(n)
f ;i under IP(n)

θ,f has mean zero and unit variance, and is of the re-

quired form (3.6), with constants c
(n)
t = 1, and a score function ϕ

(i)
f (u0, u1, . . . , ui) :=

(
(−f ′/f)◦F−1

)
(u0)F−1(ui); it admits the same interpretation, and plays the same role, as

traditional residual autocorrelations. The martingale difference condition is clearly satis-

fied. As we shall see, all the results which, for the sake of simplicity, we are deriving under

Condition (ULAN) still hold under this more general setting. ¤

Very roughly, the main consequence of the Hájek-Le Cam theory is that in the paramet-

ric model E(n)
y (f), locally and asymptotically optimal inference can (and should) be based

on the central sequence ∆∆∆(n)
θθθ,f , treating it as if it were the single observation from a Gaussian

shift model (see, once more, e.g., Jeganathan, 1995, for details). This implies that the score

function ϕϕϕ
(k)
f , which makes up the central sequence, plays a crucial role in the parametric

model associated with density f . However, it is not possible to put this score function to

immediate good use in the semiparametric model E(n)
y . The problem lies in the fact that the

score-function ϕϕϕ
(k)
f is not appropriately centered anymore under innovation densities g 6= f .

More precisely, it is generally not true that we have E(n)
g ϕϕϕ

(k)
f

(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)
= 0 for

g ∈ F0 and g 6= f . A variation in the underlying density thus has the same shift effect on

the central sequence ∆∆∆(n)
θθθ,f as certain variations in the parameter of interest. Semiparametric

theory usually palliates this confounding effect, in an optimal way, by projecting ∆∆∆(n)
θθθ,f along

the tangent spaces associated with the variations of innovation densities. These projections

yield semiparametrically efficient score (or influence) functions, defining semiparametri-

cally efficient central sequences. This approach in general requires nontrivial tangent space

calculation.

However, general results in Hallin and Werker (2003) suggest that a version of the

same semiparametrically efficient central sequence can be obtained, in the presence of a

group-invariance structure of the type we have here, by simply considering ϕϕϕ
(k)
f as a score-

generating function in the sense of Definition 2.3. The first result of the present section

(Theorem 3.1) gives the asymptotic behavior of the resulting sign-and-rank statistic. Our

main result (Theorem 4.1 in the next section) shows that this statistic indeed provides a ver-

sion of the semiparametrically efficient central sequence, hence leads to semiparametrically
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efficient inference.

It is important to insist that this semiparametric efficiency is obtained automatically,

due to the use of sign-and-rank statistics, and does not need any explicit calculation of tan-

gent spaces or efficient score functions. Moreover, the resulting statistic is also distribution-

free over F0. As explained in the introduction, this is in sharp contrast with the more

standard quasi-likelihood approaches.

Let us first introduce the sign-and-rank statistic based on the parametric central se-

quence ∆∆∆(n)
θθθ,f . Given a value for the parameter of interest θθθ ∈ ΘΘΘ, we are able to calculate

(3.3) the residuals ε
(n)
t (θθθ) from the observations Y

(n)
0 , Y

(n)
1 , . . . , Y

(n)
n . Denote by (R(n)

t (θθθ))n
t=1

the ranks of these residuals, and by N
(n)
+ (θθθ) the number of positive ones. We consider the

following sign-and-rank statistic, of the form
√

n− kS(n)
k :

∆∆∆
˜

(n)
θθθ,f := E(n)

θθθ,f

{
∆∆∆(n)

θθθ,f

∣∣∣ N (n)
+ (θθθ);R(n)

1 (θθθ), . . . , R(n)
n (θθθ);Y (n)

0

}
(3.12)

∣∣∣N (n)
+ (θθθ);R(n)

1 (θθθ), . . . , R(n)
n (θθθ);Y (n)

0

}

=
1√

n− k

n∑

t=k+1

C(n)
t (Y (n)

0 )E(n)
θθθ,f

{
ϕϕϕ

(k)
f

(
F (ε(n)

t (θθθ)), . . . , F (ε(n)
t−k(θθθ))

)

∣∣∣N (n)
+ (θθθ);R(n)

t (θθθ), . . . , R(n)
t−k(θθθ);Y

(n)
0

}

=
1√

n− k

n∑

t=k+1

C(n)
t (Y (n)

0 )a(n)
k (N (n)

+ (θθθ);R(n)
t (θθθ), . . . , R(n)

t−k(θθθ)),

with (the so-called exact scores)

a(n)
k (n+; r0, . . . , rk) := E

{
ϕϕϕ

(k)
f

(
U

(n)
t , . . . , U

(n)
t−k

) ∣∣∣N (n)
+ = n+;R(n)

t = r0, . . . , R
(n)
t−k = rk

}
,

where U
(n)
1 , . . . , U

(n)
n are i.i.d. U(0, 1) random variables, R

(n)
1 , . . . , R

(n)
n their ranks, and

N
(n)
+ := #{t : U

(n)
t > 1/2} ∼ Bin(n, 1/2) the number of such U ’s that exceed 1/2.

Although the score-function a(n)
k is based on the parametrically efficient score-function

ϕϕϕ
(k)
f , it is not the case inference based on a(n)

k is asymptotically as efficient (at f) as

inference based on ϕϕϕ
(k)
f . Indeed, ∆∆∆

˜
(n)
θθθ,f −∆∆∆(n)

θθθ,f in general is not oIP(1) under IP(n)
θθθ,f , as n →∞.

Theorem 3.1, based on Proposition 2.5, below makes this precise.
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Theorem 3.1 Consider the sign-and-rank statistic ∆∆∆
˜

(n)
θθθ,f as defined in (3.12) in the ex-

periment E(n)
y satisfying Condition (ULAN). Then, under IP(n)

θθθ,f and as n →∞,

∆∆∆
˜

(n)
θθθ,f =

1√
n− k

n∑

t=k+1

{
C(n)

t (Y (n)
0 )ϕϕϕ(k)

f

(
F

(
ε
(n)
t (θθθ)

)
, . . . , F

(
ε
(n)
t−k(θθθ)

))
(3.13)

− C̄(n)E
[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 = F
(
ε
(n)
t (θθθ)

)]

+ C̄(n)E
[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 > 1/2
]
sign

(
ε
(n)
t (θθθ)

)}

+ oIP(1)

= ∆∆∆(n)
θθθ,f − C̄(n) 1√

n− k

n∑

t=k+1

{
E

[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 = F
(
ε
(n)
t (θθθ)

)]

+ E
[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 ≤ 1/2
]
sign

(
ε
(n)
t (θθθ)

)}

+ oIP(1).

Moreover, under IP(n)
θθθ,f , ∆∆∆

˜
(n)
θθθ,f

L−→ N (0,V), with

V := If (θθθ)− C̄
[
Var

{
E

[
ϕϕϕ

(k)
f (U0, . . . , Uk)

∣∣∣ U0

]}
− (3.14)

E
[
ϕϕϕ

(k)
f (U0, . . . , Uk)

∣∣∣ U0 > 1/2
]
E

[
ϕϕϕ

(k)
f (U0, . . . , Uk)

∣∣∣ U0 > 1/2
]T

]
C̄T ,

as n →∞.

Example 3.1 (continued). In our regression example, we immediately obtain

E
[
ϕ

(0)
f (U0)

∣∣∣ U0 = F
(
ε
(n)
t (θ)

)]
= −f ′

f

(
ε
(n)
t (θ)

)
,

and

E
[
ϕ

(0)
f (U0)

∣∣∣ U0 ≤ 1/2
]

= 2
∫ 1/2

0
ϕf (u)du = 2

∫ ∞

0
f ′(z)dz = −2f(0),

since the finiteness of If =
∫
(f ′/f)2dF implies limz→∞ f(z) = 0. As a result, letting

a
(n)
0 (n+; r) = E

{
−f ′

f

(
F−1

(
U

(n)
t

)) ∣∣∣N (n)
+ = n+; R(n)

t = r
}

and X̄(n) :=
1
n

n∑

t=1

X
(n)
t we ob-

tain, for k = 0,

∆
˜

(n)
θ,f =

1√
n

n∑

t=1

X
(n)
t a

(n)
0 (N (n)

+ ; R(n)
t ) (3.15)

=
1√
n

n∑

t=1

−f ′

f

(
ε
(n)
t (θ)

)
X

(n)
t − X̄(n)

√
n

n∑

t=1

(−f ′

f

(
ε
(n)
t (θ)

)
+2f(0)sign

(
ε
(n)
t (θ)

))
+oIP(1).
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As is well-known from the literature, see, e.g., Bickel (1982), a special situation occurs when

X̄(n) = oIP(1). In that case there is no efficiency loss when considering the sign-and-rank

statistic ∆
˜

(n)
θ,f as compared to the parametrically efficient statistic ∆(n)

θ,f and the model is

adaptive. That is, from a statistical point of view, the parametric model, with f known,

and the semiparametric model, with f unknown, are equally difficult. In that case, ∆
˜

(n)
θ,f

can also be based on the ranks of the residuals alone and these statistics are also paramet-

rically efficient, compare Hallin and Werker (2003). ¤

Example 3.2 (continued). An asymptotic representation result similar to (3.13) also holds

for autoregressive central sequences. For each r
(n)
f :i defined in (3.11), let

r
˜

(n)
f :i := Eθ,f

[
r
(n)
f ;i

∣∣∣N+(θ);R(n)
1 (θ), . . . , R(n)

n (θ);Y (n)
0

]
(3.16)

=
1

n− i

n∑

t=i+1

Ef

[(−f ′

f
◦F−1

)
(F (εt))F−1(F (εt−i))

∣∣∣N+; R(n)
t , R

(n)
t−i; Y

(n)
0

]

=
1

n− i

n∑

t=i+1

b(n)
(
N+;R(n)

t , R
(n)
t−i

)

with

b(n) (n+; r0, r1) := E
[(−f ′

f
◦F−1

)
(U (n)

t )F−1(U (n)
t−1)

∣∣∣N+ = n+; R(n)
t = r0, R

(n)
t−1 = r1

]
.

Along the same lines as in Theorem 3.1, we obtain

r
˜

(n)
f :i = r

(n)
f :i −

1

(n− i)mεI
1/2
f

n∑

t=i+1

E
[(−f ′

f
◦F−1

)
(U (n)

0 )F−1(U (n)
1 )

∣∣∣U (n)
0 = F (ε(n)

t (θ))
]

− 1

(n− i)mεI
1/2
f

n∑

t=i+1

E
[(−f ′

f
◦F−1

)
(U (n)

0 )F−1(U (n)
1 )

∣∣∣U (n)
0 ≤ 1/2

]
sign(ε(n)

t (θ))

+oIP(n−1/2) (3.17)

= r
(n)
f :i −

1

(n− i)mεI
1/2
f





n∑

t=i+1

−f ′

f
(ε(n)

t (θ))− 2f(0)(2N+ − n)



 µε + oIP(n−1/2).

Similarly, defining

∆
˜

(n)
k(n),θ,f := Eθ,f

[
∆(n)

k(n),θ,f

∣∣∣N+(θ);R(n)
1 (θ), . . . , R(n)

n (θ);Y (n)
0

]
= mεI

1/2
f

k(n)∑

i=1

θi−1 n− i√
n

r
˜

(n)
f :i ,
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we obtain

∆
˜

(n)
k(n),θ,f = ∆(n)

k(n),θ,f −
µε√
n

k(n)∑

i=1

θi−1





n∑

t=i+1

−f ′

f
(ε(n)

t (θ))− 2f(0)(2N+ − n)



 + oIP(1).

Indeed, decompose ∆
˜

(n)
k(n),θ,f into ∆

˜
(n)
κ,θ,f +mεI

1/2
f

k(n)∑

i=κ+1

θi−1 n− i√
n

r
˜

(n)
f :i : for any ε > 0, there

exists a κ = κ(ε) such that, for any n ≥ k−1(κ),

E
[(

∆(n)
k(n),θ,f −∆(n)

κ,θ,f

)2
]

=
k(n)∑

i=κ+1

θ2(i−1) (n− i)2

n

(
r
(n)
f :i

)2
< ε2.

On the other hand, Theorem 3.1 applies to ∆
˜

(n)
κ,θ,f (equivalently, (3.17) applies to any finite

linear combination of r
˜

(n)
i,f ’s). The desired asymptotic representation follows. ¤

Theorem 3.1 gives the asymptotic behavior of the sign-and-rank statistic (3.12) under

the assumption that the parametric score function is based on the same density f as the

actual distribution of the innovations. The key argument in favor of the use of sign-and-rank

statistics, is that they are robust to misspecification of the innovation density. Moreover,

this robustness does not come at the cost of efficiency loss, as we will see that the sign-

and-rank statistics we consider in this section attain the semiparametric efficiency bound

(see Section 4). We now first discuss the behavior of the sign-and-rank statistic (3.12) in

case the true innovation density is g 6= f . As the proof is completely similar to that of

Theorem 3.1, it is omitted. Note, however, that the distribution-freeness of the signs and

ranks is crucial.

Theorem 3.2 Consider the sign-and-rank statistic ∆∆∆
˜

(n)
θθθ,f as defined in (3.12) in the ex-

periment E(n)
y (f) satisfying Condition (ULAN). Then, for any g ∈ F0, under IP(n)

θθθ,g and as

n →∞,

∆∆∆
˜

(n)
θθθ,f =

1
n− k

n∑

t=k+1

{
C(n)

t (Y (n)
0 )ϕϕϕ(k)

f

(
G

(
ε
(n)
t (θθθ)

)
, . . . , G

(
ε
(n)
t−k(θθθ)

))
(3.18)

− C̄(n)E
[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 = G
(
ε
(n)
t (θθθ)

)]

+ C̄(n)E
[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 > 1/2
]
sign

(
ε
(n)
t (θθθ)

)}

+ oIP(n−1/2).
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4 Semiparametric efficiency of sign-and-rank statistics

We now show that the sign-and-rank statistics (3.12) based on the parametrically efficient

score functions from the LAN structure of parametric subexperiments attain the semipara-

metric efficiency bound for inference about the finite-dimensional parameter θθθ of interest.

The key idea can already be seen from the results in Example 3.1. The difference

between the parametric central sequence ∆(n)
θ,f in Example 3.1 and the sign-and-rank statistic

∆
˜

(n)
θ,f based on the parametric score ϕ

(0)
f is given by X̄(n)

(−f ′
f (ε)− 2f(0)sign(ε)

)
. In

semiparametric parlance, this function is the projection of the parametric score function

−f ′/f onto the tangent space for the median regression model. The first part of this

projection, X̄(n)−f ′
f (ε) was obtained in Bickel (1982), as discussed by Newey (1990). This

projection would be relevant if the distribution of ε would be completely unspecified. The

second part −2X̄(n)f(0)sign(ε) occurs because of the median restriction imposed on the

distribution of ε. This explains how the sign-and-rank statistic attains the semiparametric

lower bound.

The same analysis extends to the much more general case of median-restricted models

under a weak condition on the smoothness of residuals in the model as a function of the

parameter of interest θθθ. Let us first introduce this condition.

Define the p-valued function

ψψψf (u) := E
[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 = u
]
. (4.1)

For ease of notation, define

Vψψψ := E[ψψψf (U)ψψψf (U)T ] and µµµ+
ψψψ := E[ψψψf (U)|U > 1/2].

Note that, in view of (3.7), we have E[ψψψf (U)] = 0, so that Vψψψ is the p×p covariance matrix

of ψψψf , and µµµ+
ψψψ = −µµµ−ψψψ := −E[ψψψf (U)|U ≤ 1/2] = 2

∫ 1
1/2 ψψψf (u)du. Now, consider the residual

statistic

T(n)(θθθ) :=
1√
n

n∑

t=1




ψψψf

(
F

(
ε
(n)
t (θθθ)

))

sign
(
ε
(n)
t (θθθ)

)


 .

Under IP(n)
θθθ,f , T(n)(θθθ) is clearly asymptotically (as n → ∞) normal with mean zero and
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covariance matrix 


Vψψψ µµµ+
ψψψ

µµµ+T
ψψψ 1


 .

Assume that this convergence also holds jointly with the central sequence ∆∆∆(n)
θθθ,f , i.e.,




∆∆∆(n)
θθθ,f

T(n)(θθθ)


 L−→ N







0

0

0




,




If (θθθ) C̄Vψψψ C̄µµµ+
ψψψ

VψψψC̄T Vψψψ µµµ+
ψψψ

µµµ+T
ψψψ C̄T µµµ+T

ψψψ 1







under IP(n)
θθθ,f , as n → ∞. From Le Cam’s third Lemma, it follows immediately that, under

IP(n)
θθθn,f with θθθn = θθθ + hn/

√
n + o(n−1/2) and hn → h as n → ∞, T(n)(θθθ) is asymptotically

normal with mean 


VψψψC̄Th

µµµ+T
ψψψ C̄Th


 ,

and unchanged covariance matrix. Since Lθθθn,f

((
ε
(n)
t (θθθn)

)n

t=1

)
= Lθθθ,f

((
ε
(n)
t (θθθ)

)n

t=1

)
, we

find that T(n)(θθθn) + [Vψψψ,µµµ+
ψψψ ]T C̄Th and T(n)(θθθ) are “close in distribution”, under IP(n)

θθθ,f ,

as n → ∞. The condition (Condition (S)) that we impose, and check in the examples of

Section 5, is that they are in fact “close in probability”:

Condition (S). Under IP(n)
θθθ,f and as n →∞, we have

T(n)(θθθn)−T(n)(θθθ) +




Vψψψ

µµµ+T
ψψψ


 C̄Th = oIP(1).

¤

Condition (S) is close to the smoothness condition studied in Bickel et al (1993), Proposi-

tion 2.1.2. In the literature it is often referred to as an asymptotic linearity property.

Under the above Conditions (ULAN) and (S), we can show that the sign-and-rank

statistic ∆∆∆
˜

(n)
θθθ,f attains the semiparametric lower bound in E(n)

y . The proof of this result

follows from classical arguments. Statistical inference in a submodel of E(n)
y is by definition

easier than in the complete model E(n)
y , in the sense that the (semiparametric) lower bound

is smaller. Thus, to prove that a certain statistic attains the semiparametric lower bound
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in the larger model E(n)
y , it suffices to prove that it attains the lower bound induced by

some (parametric) submodel. We will follow this line of reasoning below as well.

Theorem 4.1 In the semiparametric model E(n)
y and under the Conditions (ULAN) and (S),

the asymptotic variance of the distribution-free sign-and-rank statistic

∆∆∆
˜

(n)
θθθ,f :=

1√
n− k

n∑

t=k+1

C(n)
t (Y (n)

0 )a(n)
k (N (n)

+ (θθθ);R(n)
t (θθθ), . . . , R(n)

t−k(θθθ)), (4.2)

constructed from the parametric score function ϕϕϕ
(k)
f , i.e., with scores

a(n)
k (n+; r0, . . . , rk) := E

{
ϕϕϕ

(k)
f

(
U

(n)
t , . . . , U

(n)
t−k

)
(4.3)

∣∣∣N (n)
+ = n+; R(n)

t = r0, . . . , R
(n)
t−k = rk

}
,

equals, under IP(n)
θθθ,f and as n → ∞, the semiparametric lower bound. More precisely, there

exists a regular (LAN) parametric submodel in which the statistic ∆∆∆
˜

(n)
θθθ,f is (parametrically)

efficient, that is, ∆∆∆
˜

(n)
θθθ,f is the central sequence in this parametric model.

Example 3.1 (continued). In our running regression example, Theorem 4.1 can be applied

immediately to the sign-and-rank statistic (3.15). Since Condition (ULAN) is satisfied,

it only remains to verify condition (S). We consider the first and second components of

the statistic T(n)(θ) separately. Smoothness (asymptotic linearity) of the first component

is immediate from the ULAN property of the pure location model (i.e., the model of the

present example with X
(n)
t = 1). Smoothness of the second component is a well-known

result in the literature (see, e.g., Van Eeden, 1972).

It follows that this statistic attains the semiparametric lower bound. Note that such a

statistic could be obtained via the more traditional tangent space arguments as well, but

the point here is that the projections needed in such calculations are automatically carried

out by using signs and ranks of the innovations. ¤

Example 3.2 (continued). Here again, condition (ULAN) is satisfied, while condition (S)

follows from the ULAN property of autoregressive models with a constant term (a partic-

ular case of the model considered, e.g., by Swensen (1985)), along with the smoothness of
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the sign-based component of T(n)(θ). ¤

Several remarks are appropriate at this point. First of all, the sign-and-rank statis-

tic (4.2) is based on exact scores, i.e., the score function a(n)
k is the exact expectation of

the parametric score function ϕϕϕ
(k)
f , as defined in (4.3). Note that the argument of the

expectation in (4.3) depends on f , but that calculating the expectation given the values

of ranks and signs can be done without knowledge about the actual density, due to the

distribution-freeness of the ranks and signs in the model we consider. A simple simulation

algorithm thus could be used to calculate a(n)
k up to arbitrary precision, given ϕϕϕ

(k)
f . Al-

ternatively, one also may use the so-called approximate scores that generally result from

substituting F−1(R(n)
t /(n + 1)) for the residuals ε

(n)
t (θθθ). For the sign-and-rank statistics,

these approximate scores take the form

a(n)
k;approx(n+; r0, . . . , rk)

= ϕϕϕ
(k)
f

(
I{r0 ≤ n−} r0

2(n− + 1)
+ I{r0 > n−}

[
1
2

+
r0 − n−

2(n+ + 1)

]
, . . . ,

I{rk ≤ n−} rk

2(n− + 1)
+ I{rk > n−}

[
1
2

+
rk − n−

2(n+ + 1)

])
,

where n− = n − n+. In most cases, if appropriately centered, these approximate score

functions yield the same asymptotic behavior for the sign-and-rank statistic ∆∆∆
˜

(n)
θθθ,f as the

exact ones a(n)
k , while their numerical evaluation does not require any additional computa-

tion once the f -quantile function has been evaluated. This of course saves computing time.

However, the additional regularity conditions and the proofs related with these approximate

scores are delicate and of little importance to the main concern of the present paper. The

interested reader is referred to Hallin et al. (2003) for a detailed treatment of this problem.

Example 3.1 (continued). In the regression example, the semiparametrically efficient

sign-and-rank statistic, under approximate score form, easily follows from the remarks

above, yielding (for the sake of simplicity, we avoid introducing specific notation for such

approximate score versions)

∆
˜

(n)
θ,f =

1√
n

n∑

t=1

X
(n)
t

(
−f ′

f

(
ε
˜

(n)
f ;t

)
− zf

)
, (4.4)
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where

ε
˜

(n)
f ;t := F−1

(
I{Rt ≤ N−} R

(n)
t

2(N− + 1)
+ I{R(n)

t > N−}
[
1
2

+
R

(n)
t −N−

2(N+ + 1)

])
(4.5)

(under IP(n)
θθθ,f , a rank-and-sign reconstruction of ε

(n)
t ). The centering zf = E(−f ′/f)(ε

˜
(n)
f ;t ) is

needed to ensure that the efficient sign-and-rank statistic is exactly centered. The form (4.4)

is more pleasant than (3.15) based on exact scores, as it does not need a simulation routine

to calculate the conditional expectation in (3.15). The first-order asymptotic properties of

both (4.4) and (3.15) are equal. ¤

Example 3.2 (continued). Similarly, the approximate score version of ∆
˜

(n)
θ,f here is ob-

tained from substituting in ∆
˜

(n)
k(n),θ,f the approximate score versions

r
˜

(n)
f ;i :=

1

(n− i)mεI
1/2
f

n∑

t=i+1

(
−f ′

f
(ε
˜

(n)
f ;t )ε

˜
(n)
f ;t−i − z

(i)
f

)
, (4.6)

of r
˜

(n)
f ;i for the exact ones. The centering z

(i)
f is given by zf = E(−f ′/f)(ε

˜
(n)
f ;t )ε

˜
(n)
f ;t−i, which

can again be calculated without simulation. ¤

A second remark is that the distribution-free sign-and-rank statistic (4.2) reaches the

semiparametric efficiency bound associated with density f . This means that semiparametric

efficiency is achieved at correctly specified f (i.e., when the actual innovation density g

coincides with f). The sign-and-rank statistic (4.2) generally does not attain this bound

under incorrectly specified innovation density (under g 6= f). It might be possible, under

adequate regularity conditions, to have the sign-and-rank statistic adapt to the unknown

innovation density by pre-estimating this density, much along the same lines as this is done

for rank statistics in Hallin and Werker (2003). The essential difference between the rank-

only case and our sign-and-rank case is that in the former the density estimate can be based

on the order statistics of the residuals, which are independent of their ranks. In the sign-

and-rank case, the order statistics are, however, not independent of the signs that appear

in the statistic. Thus, although a result on pre-estimating the density in sign-and-rank

statistics would be important, the details probably will be far from trivial and we leave this

for possible discussion elsewhere.
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5 Further examples

In this final section, we provide several examples to illustrate the scope of our results. Our

running examples have shown how to handle simple regression and autoregression models

with independent zero median innovations. Our results however apply to more sophisticated

models. Some of them are investigated in this section.

Example 5.1 ARMA models

The ARMA(p, q) model is a natural generalization of the AR(1) case considered in Exam-

ple 3.2. Let the observations Y
(n)
1 , . . . , Y

(n)
n be generated from the model

A(L)Yt := Yt −
p∑

i=1

aiYt−i = εt +
q∑

j=1

bjεt−j =: B(L)εt, t = 1, . . . , n, (5.1)

with starting values Y(n)
0 =

(
Y

(n)
0 , Y

(n)
−1 , . . . , Y

(n)
−p+1, ε

(n)
0 , ε

(n)
−1 , . . . , ε

(n)
−q+1

)′
and i.i.d. inno-

vations ε
(n)
1 , . . . , ε

(n)
n with density f ∈ F0. Writing θθθ := (a1, . . . , ap, b1, . . . , bq)

′ for the

parameter of interest, assume that ap 6= 0 6= bq, that θθθ is such that the roots of A(z) = 0

and B(z) = 0, z ∈ C are distinct, and that they all lie outside the unit disc; denote by ΘΘΘ

the set of all such parameter values. As for the innovation density f , the same assumptions

are made as in Example 3.2. The model under these assumption satisfies Condition ULAN

at f ; see, e.g., Hallin and Puri (1985) or Drost et al. (1997).

The explicit form of the central sequence requires some further notation. This notation

is cumbersome, but the essential idea of the present paper goes on as before. Letting

C(L) := A(L)B(L) =
∑p+q

i=1 ciL
i, define gu = gu(θθθ), hu = hu(θθθ), and Gu = Gu(θθθ) by means

of

(A(L))−1 :=
∞∑

i=1

giL
i, (B(L))−1 :=

∞∑

i=1

hiL
i, (C(L))−1 :=

∞∑

i=1

GiL
i.

It follows from the assumptions on the characteristic roots of A(z) and B(z) that gi, hi,
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and Gi all are O(λi), as i →∞, for some λ ∈ (0, 1). Define

M = M(θθθ) :=




1 0 . . . 0 1 0 . . . 0

g1 1 0 . . . 0 h1 1 0 . . . 0

...
. . .

...
. . .

...

0
...

gp−1 . . . g1 1

gp . . . g2 g1 hq−1 . . . h1 1
...

...
... hq . . . h2 h1

...
...

gp+q−1 . . . gq+1 gq hp+q−1 . . . hp+1 hp




and

C = C(θθθ) :=




1 c1 . . . cp+q−1

0 1 cp+q−2

...
. . .

...

0 . . . c1

0 . . . 0 1




From Proposition 4.1 in Hallin and Puri (1985), the central sequence can be written, with

the same notation as in Example 3.2, as

∆∆∆(n)
θθθ,f =

(
nm2

εIf

)1/2
M′(θθθ)C(θθθ)




k(n)∑

i=1

(n− i)1/2Gi−1r
(n)
f ;i , . . . ,

k(n)∑

i=1

(n− i)1/2Gi−p−qr
(n)
f ;i



′

.

Here also, k(n) ↑ ∞ is an increasing sequence that can be chosen arbitrarily in view of the

exponential decrease of Gi as i →∞.

The corresponding efficient sign-and rank central sequence ∆
˜

(n)
θ,f is obtained from re-

placing the r
˜

(n)
f ;i ’s either with their conditional expectations (3.16) or by their approximate

score sign-and rank counterparts (4.6). ¤

It is not very difficult to combine the regression results with dynamic models for the

regression errors, as the following example shows.
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Example 5.2 Dynamic regression models

Consider the regression model with moving average errors of order one

Y
(n)
t = βββTX(n)

t + ε
(n)
t − αε

(n)
t−1, t = 1, . . . , n,

where, for simplicity, Y
(n)
0 := ε

(n)
0 is assumed to be observed. The innovations ε

(n)
t are

assumed to be i.i.d. with density f ∈ F0. We do not know of a paper that discusses a

Local Asymptotic Normality result for this model directly, but it is easily verified that

Condition (ULAN) is satisfied for the parameter θθθ = (βββT , α)T , using, e.g., the results in

Drost et al. (1997), under the same assumptions on ε and X as in the regression example,

provided that |α| < 1 and ε has finite variance. In that case, the central sequence for θθθ is

given by

∆∆∆(n)
θθθ,f =

1√
n

n∑

t=1




X(n)
t 0

0 −1







−f ′
f (ε(n)

t )

−f ′
f (ε(n)

t )ε(n)
t−1


 , (5.2)

and Fisher information

If (θθθ) := If




limn→∞ 1
n

n∑

t=1

X(n)
t

(
X(n)

t

)T
µε

(
X̄0

)T

µεX̄0 E
(
ε
(n)
t

)2


 ,

with µε := Eε
(n)
t , X̄0 := limn→∞ 1

n

∑n
t=1 X(n)

t , and, as before, If :=
∫

(f ′/f)2 dF . Theo-

rem 3.1 can be applied directly with k = 2 and

E
[
ϕϕϕ

(k)
f (U0, U1)

∣∣∣ U0

]
=




−f ′
f (F−1(U0))

−f ′
f (F−1(U0))µε


 ,

Var
{
E

[
ϕϕϕ

(k)
f (U0, U1)

∣∣∣ U0

]}
= If




1 µε

µε µ2
ε


 ,

E
[
ϕϕϕ

(k)
f (U0, U1)

∣∣∣ U0 > 1/2
]

= 2f(0)




1

µε


 .

Concluding, the semiparametrically efficient sign-and-rank statistic is obtained, under

approximate score form, upon replacing ε
(n)
t in (5.2) by ε

˜
(n)
f ;t defined in (4.5), yielding

∆∆∆
˜

(n)
θθθ,f =

1√
n

n∑

t=1

[
X(n)

t 0
0 −1

]



−f ′
f (ε

˜
(n)
f ;t )− zf

−f ′
f (ε

˜
(n)
f ;t )ε

˜
(n)
f ;t−1 − z

(1)
f



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The asymptotic variance, which equals the semiparametric lower bound, is given by (3.14),

i.e.,

If (θθθ)−
(
If − 4f(0)2

)



X̄0 0

0 1







1 µε

µε µ2
ε







X̄0 0

0 1




T

.

In order to conclude that the sign-and-rank statistic based on the parametric score

function for θθθ, i.e., based on the central sequence (5.2), provides for semiparametrically

efficient inference, we need to check for the smoothness Condition (S). Again, as far as

the first component of T(n)(θθθ) is concerned, smoothness is a direct consequence of ULAN.

Concerning the second component of T(n)(θθθ), which contains the signs of the innovations,

smoothness is easily verified by combining the corresponding results for the regression model

with i.i.d. innovations (our running example) with those for the ARMA models as discussed

in the previous example. ¤

The examples discussed so far, all are essentially variations on location models. Our

results are equally applicable to scale models, with the provision that a condition on the

median of the innovations generally does not allow for the identification of “unconditional”

scale parameters in the model. We start with a model with fully specified heteroskedasticity.

Example 5.3 Median regression with known conditional heteroskedasticity

Consider a model for the conditional median specified as

Y
(n)
t = βββTX(n)

t + σ(X(n)
t )ε(n)

t , t = 1, . . . , n, (5.3)

for some known function σ(·). Under standard regularity conditions as those mentioned

above, the central sequence for θθθ = βββ is directly seen to be

∆∆∆(n)
θθθ,f =

1√
n

n∑

t=1

−f ′

f
(ε(n)

t )
X(n)

t

σ(X(n)
t )

. (5.4)

This implies that all results of the standard regression model can be applied, upon weighting

the observations by σ(X(n)
t ). This classical approach to heteroskedasticity extends to our

results as well. The semiparametrically efficient sign-and-rank statistic is given by

∆∆∆
˜

(n)
θθθ,f =

1√
n

n∑

t=1

(
−f ′

f
(ε
˜

(n)
f ;t )− zf

)
X(n)

t

σ(X(n)
t )

,
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where ε
˜

(n)
f ;t is as in (4.5). ¤

The next example discusses the case where the heteroskedasticity is unknown, but of

a given parametric form. As explained in the introduction, our results concern semipara-

metric efficiency with respect to unknown innovation densities. Efficiency in models with

semiparametric specification of regression functions or volatility functions cannot be ob-

tained using signs and ranks only, since they are not distribution-free with respect to these

functional parameters. Parametric functional forms do, however, fall under the scope of

sign-and-rank statistics.

Example 5.4 Median regression with parametric conditional heteroskedasticity

Consider a model for the conditional median specified as

Y
(n)
t = βββTX(n)

t + σ(X(n)
t ;ααα)ε(n)

t , t = 1, . . . , n, (5.5)

for some known function σ(·; ·). The central sequence for θθθ = (βββT ,αααT )T is known (compare,

e.g., Drost et al., 1997) to be

∆∆∆(n)
θθθ,f =

1√
n

n∑

t=1




X
(n)
t

σ(X
(n)
t ;ααα)

0

0 σ′(X(n)
t ;ααα)

σ(X
(n)
t ;ααα)







−f ′
f (ε(n)

t )

−
(
1 + ε

(n)
t

f ′
f (ε(n)

t )
)


 , (5.6)

where σ′(·; ·) denotes the derivative of σ(·; ·) with respect to the second argument. The

Fisher information follows, again, from the martingale central limit theorem, assuming

that a law-of-large-numbers can be applied to the averages of X
(n)
t

σ(X
(n)
t ;ααα)

and σ′(X(n)
t ;ααα)

σ(X
(n)
t ;ααα)

. The-

orem 3.1 is applicable, with

E
[
ϕϕϕ

(k)
f (U0)

∣∣∣ U0

]
= ϕϕϕ

(k)
f (U0) , and E

[
ϕϕϕ

(k)
f (U0)

∣∣∣ U0 > 1/2
]

=




2f(0)

0


 ,

since
∫

f ′/f(ε)dF (ε) = 0 and
∫∞
0 (1 + εf ′/f(ε)) dF (ε) = 0. This shows that the sign-and-

rank statistic based on (5.6) is asymptotically equivalent to

1√
n

n∑

t=1




X
(n)
t

σ(X
(n)
t ;ααα)

0

0 σ′(X(n)
t ;ααα)

σ(X
(n)
t ;ααα)

− σ′(X(n)
t ;ααα)

σ(X
(n)
t ;ααα)







−f ′
f (ε(n)

t )

−
(
1 + ε

(n)
t

f ′
f (ε(n)

t )
)




+
1√
n

n∑

t=1




X
(n)
t

σ(X
(n)
t ;ααα)

(
f ′
f (ε(n)

t ) + sign(ε(n)
t )2f(0)

)

0


 ,
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where an overline again indicates a time-average. Note that the sign-and-rank statistic

does not contain any information for components of ααα for which σ′(·;ααα) is constant. This

is due to the fact that such “unconditional” variance parameters are not identified in the

semiparametric model. Semiparametric efficiency of the sign-and-rank statistic at correctly

specified innovation density f is obtained by verifying Condition (S) for the present model.

Again, this follows from the ULAN condition concerning the first component of T(n)(θθθ)

and for the second component from results on the behavior of sign statistics in scale models

as in Hájek and Šidák (1967). Once more, the semiparametrically efficient sign-and-rank

statistic based on approximate scores is obtained by replacing ε
(n)
t by ε

˜
(n)
f ;t in (5.6). ¤

6 Appendix

Proof of Proposition 2.4: For ease of notation, we consider the univariate case only,

i.e., p = 1, and one-dimensional regression constants c
(n)
t with mean c̄(n). Now, observe

E(n)
f

[
S

(n)
k

∣∣∣ N (n)
+

]
= E(n)

f

[
S

(n)
k

∣∣∣εεε(n)
(·)

]
,

since, also conditionally on N
(n)
+ , the ranks (R(n)

1 , . . . , R
(n)
n ) and the order statistics εεε

(n)
(·) are

independently distributed. Consequently, in order to establish (2.8), it suffices to prove that

Var(n)
f

[
S

(n)
k − T

(n)
ϕk;f ;k

∣∣∣εεε(n)
(·)

]
= oIP(1/n). Let U

(n)
t := F (ε(n)

t ) and denote by U(n)
(·) the corre-

sponding vector of order statistics. Observe that the ranks R
(n)
1 , . . . , R

(n)
n of ε

(n)
1 , . . . , ε

(n)
n

are also those of U
(n)
1 , . . . , U

(n)
n . Finally, denote

α
(n)
U(·);k

(i0, . . . , ik) := a
(n)
k

(
N

(n)
+ ; i0, . . . , ik

)
− ϕk

(
U

(n)
(i0), . . . , U

(n)
(ik)

)
,

ᾱ(n) := E(n)
f

[
α

(n)
U(·);k

(
R

(n)
t , . . . , R

(n)
t−k

)∣∣∣U(n)
(·)

]

= E(n)
f

[
α

(n)
U(·);k

(
R

(n)
t , . . . , R

(n)
t−k

)∣∣∣εεε(n)
(·)

]
.

With this notation, one immediately notices that

E(n)
f

[
T

(n)
ϕk;f ;k

∣∣∣εεε(n)
(·)

]
= c̄(n)E(n)

f

[
ϕk

(
F (ε(n)

1 ), . . . , F (ε(n)
k+1)

)∣∣∣εεε(n)
(·)

]
.
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Now,

Var(n)
f

[
S

(n)
k − T

(n)
ϕk;f ;k

∣∣∣εεε(n)
(·)

]

= Var(n)
f


 1

n− k

n∑

t=k+1

c
(n)
t α

(n)
U(·);k

(
R

(n)
t , . . . , R

(n)
t−k

)
∣∣∣∣∣∣
εεε
(n)
(·)




= E(n)
f





 1

n− k

n∑

t=k+1

c
(n)
t α

(n)
U(·);k

(
R

(n)
t , . . . , R

(n)
t−k

)
− c̄(n)ᾱ(n)




2
∣∣∣∣∣∣∣
εεε
(n)
(·)




= E(n)
f





 1

n− k

n∑

t=k+1

c
(n)
t

(
α

(n)
U(·);k

(
R

(n)
t , . . . , R

(n)
t−k

)
− ᾱ(n)

)



2
∣∣∣∣∣∣∣
εεε
(n)
(·)




≤

 1

n− k

n∑

t=k+1

(
c
(n)
t

)2


×

E(n)
f





 1

n− k

n∑

t=k+1

(
α

(n)
U(·);k

(
R

(n)
t , . . . , R

(n)
t−k

)
− ᾱ(n)

)



2
∣∣∣∣∣∣∣
εεε
(n)
(·)


 .

The first factor is O(1) by assumption and the second factor can be seen to be oIP(1/n)

following exactly the lines of the proof of Lemma 4.1 in Hallin et al. (2003). This estab-

lishes (2.8).

In order to prove (2.9), observe

T
(n)
ϕk;f ;k − E(n)

f

[
T

(n)
ϕk;f ;k

∣∣∣εεε(n)
(·)

]

=
1

n− k

n∑

t=k+1

c
(n)
t ϕk

(
U

(n)
t , . . . , U

(n)
t−k

)
− c̄(n)E(n)

f

[
ϕk

(
U

(n)
1 , . . . , U

(n)
k+1

)∣∣∣U(n)
(·)

]

=
1

n− k

n∑

t=k+1

c
(n)
t ϕk

(
U

(n)
t , . . . , U

(n)
t−k

)

− c̄(n)

n− k

n∑

t=k+1

k∑

l=0

∫ 1

u0=0
· · ·

∫ 1

uk=0
ϕk

(
u0, . . . , ul−1, U

(n)
t , ul+1, . . . , uk

)
du0 · · ·duk

+kc̄(n)
∫ 1

u0=0
· · ·

∫ 1

uk=0
ϕk(u0, . . . , uk)du0 · · ·duk + oIP(n−1/2)

=
1

n− k

n∑

t=k+1

(
c
(n)
t − c̄(n)

)
ϕk

(
U

(n)
t , . . . , U

(n)
t−k

)

+
c̄(n)

n− k

n∑

t=k+1

ϕ∗k
(
U

(n)
t , . . . , U

(n)
t−k

)
+ oIP(n−1/2),

where the second equality is due to standard U-statistic results and the fact that ϕk is

square-integrable (see, e.g., Serfling (1980), Section 5.3). ¤
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Proof of Proposition 2.5: Again, we give the proof for the univariate case p = 1

with regression constants c
(n)
t . First of all, observe

E(n)
[
S

(n)
k

∣∣∣N(n)
]

= E(n)


 1

n− k

n∑

t=k+1

c
(n)
t E(n)

[
ϕk

(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)∣∣∣ N+; R(n)
t , . . . , R

(n)
t−k

]
∣∣∣∣∣∣
N(n)




=
1

n− k

n∑

t=k+1

c
(n)
t E(n)

[
ϕk

(
F (ε(n)

t ), . . . , F (ε(n)
t−k)

)∣∣∣N(n)
]

= c̄(n)E(n)
[
ϕ̄k

(
s
(n)
t , . . . , s

(n)
t−k

)∣∣∣N(n)
]
+ oIP(n−1/2)

= c̄(n)
∑

(s0,...,sk)∈{−1,1}k+1

ϕ̄k (s0, . . . , sk)


N

(n)
+

n




#{i: si=1} 
1− N

(n)
+

n




k+1−#{i: si=1}

+ oIP(n−1/2),

where, in the last equality, we have used the binomial approximation of the hypergeometric

distribution. Now, since

d
dp

pj (1− p)k+1−j
∣∣∣∣
p=1/2

= (2j − (k + 1))
(

1
2

)k

,

we obtain

E(n)
[
S

(n)
k

∣∣∣N(n)
]
− E(n)

[
S

(n)
k

]

= c̄(n)
(
E(n)

[
ϕ̄k

(
s
(n)
t , . . . , s

(n)
t−k

)∣∣∣N(n)
]
− E(n)

[
ϕ̄k

(
s
(n)
t , . . . , s

(n)
t−k

)])

= c̄(n)
∑

(s0,...,sk)∈{−1,1}k+1

ϕ̄k (s0, . . . , sk)×




N

(n)
+

n




#{i: si=1} 
1− N

(n)
+

n




#{i: si=−1}

−
(

1
2

)k+1




+ oIP(n−1/2)

= c̄(n)
∑

(s0,...,sk)∈{−1,1}k+1

ϕ̄k (s0, . . . , sk)
2#{i : si = 1} − (k + 1)

2k


N

(n)
+

n
− 1

2




+ oIP(n−1/2)

= c̄(n)ϕ̄k


N

(n)
+

n
− 1

2


 + oIP(n−1/2).

This proves (2.11); (2.12) follows immediately. ¤
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Proof of Theorem 3.1: Since Y
(n)
0 is exogenous, we may apply Proposition 2.5 condi-

tionally on Y
(n)
0 . The fact that ϕϕϕ

(k)
f is a score-generating function for a(n)

k follows immedi-

ately from Proposition 3.1 in Hallin et al. (2003). Now, with the notation (2.7), and letting

ϕϕϕk := ϕϕϕ
(k)
f , we obtain, from the martingale difference condition (3.7),

ϕϕϕ∗k(u0, . . . , uk) := ϕϕϕ
(k)
f (u0, . . . , uk)− E

[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 = u0

]
.

It remains to determine the value of the constant vector ϕ̄ϕϕk. With the notation of Propo-

sition 2.5, define the signs sl = sign(Ul − 1/2), l = 0, . . . , k. Consequently, conditionally

on s1, . . . , sk, we have that ϕ̄ϕϕk(s0, s1, . . . , sk) has a distribution with a two-point support:

ϕ̄ϕϕk(−1, s1, . . . , sk) and ϕ̄ϕϕk(+1, s1, . . . , sk) (both with probability 1/2). Again due to the

martingale difference condition (3.7), we have ϕ̄ϕϕk(−1, s1, . . . , sk) = −ϕ̄ϕϕk(+1, s1, . . . , sk).

Now, still conditionally on s1, . . . , sk, the number of positive signs #{l = 0, . . . , k : sl = 1}
also takes a two-point distribution but with values #{l = 1, . . . , k : sl = 1} and #{l =

1, . . . , k : sl = 1}+ 1. Consequently, taking these results together,

E
[
ϕ̄ϕϕk(s0, s1, . . . , sk)

(
#{l = 0, . . . , k : sl = 1} − k + 1

2

)∣∣∣∣ s1, . . . , sk

]

=
1
2

[
ϕ̄ϕϕk(+1, s1, . . . , sk)

(
#{l = 1, . . . , k : sl = 1}+ 1− k + 1

2

)

+ ϕ̄ϕϕk(−1, s1, . . . , sk)
(

#{l = 1, . . . , k : sl = 1} − k + 1
2

)]

=
1
2
ϕ̄ϕϕk(+1, s1, . . . , sk).

The constant ϕ̄ϕϕk, as defined in Proposition 2.5, readily follows:

ϕ̄ϕϕk = 4E
[
ϕ̄ϕϕk(s0, s1, . . . , sk)

(
#{l = 0, . . . , k : sl = 1} − k + 1

2

)]

= 2E [ϕ̄ϕϕk(s0, s1, . . . , sk)| s0 = 1] = 2E [ϕϕϕk(U0, U1, . . . , Uk)|U0 > 1/2]

= −2E [ϕϕϕk(U0, U1, . . . , Uk)|U0 ≤ 1/2] .

The result (3.13) then is a direct consequence of Proposition 2.5, using the fact that

(N (n)
+ /n− 1/2) = (2n)−1 ∑n

t=1 sign(ε(n)
t ).

The limiting distribution (3.14) follows immediately upon applying the martingale cen-
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tral limit theorem to

1√
n− k

n∑

t=k+1




C(n)
t (Y (n)

0 )ϕϕϕ(k)
f

(
F

(
ε
(n)
t (θθθ)

)
, . . . , F

(
ε
(n)
t−k(θθθ)

))

E
[
ϕϕϕ

(k)
f (U0, U1, . . . , Uk)

∣∣∣ U0 = F
(
ε
(n)
t (θθθ)

)]

sign
(
ε
(n)
t (θθθ)

)




.

Defining Vψψψ := Var
{
E

[
ϕϕϕ

(k)
f (U0, . . . , Uk)

∣∣∣ U0

]}
and µµµ+

ψψψ := E
[
ϕϕϕ

(k)
f (U0, . . . , Uk)

∣∣∣ U0 > 1/2
]

this limiting distribution is N (0,W) with

W :=




If (θθθ) C̄Vψψψ C̄µµµ+
ψψψ

VψψψC̄T C̄VψψψC̄T C̄µµµ+
ψψψ(

µµµ+
ψψψ

)T
C̄T

(
µµµ+

ψψψ

)T
C̄T 1




.

Section 4 contains more detailed calculations that can be used to verify this result. ¤

The proof of Theorem 4.1 is based on the following lemma. Note that this lemma is not

restricted to the specification (3.6) for the central sequence. Nor does it use the uniformity

in the Condition (ULAN) (LAN would be enough).

Lemma 6.1 Assume that the Conditions (ULAN) and (S) hold at the submodel E(n)
y (f0).

Define the parametric family of densities

fηηη(z) := f0(z) exp
(
−a(ηηη)ηηηTµµµ+

ψψψ sign(z) + ηηηTψψψf0
(F0(z)) + b(ηηη)

)
, ηηη ∈ IRp, (6.7)

where a : IRp → IR and b : IRp → IR are such that
∫ 0
−∞ fηηη(z)dz =

∫∞
0 fηηη(z)dz = 1/2; clearly,

for all ηηη, fηηη ∈ F0. Then the sequence of experiments

Ē(n)
y (f0) :=

(
IRn,Bn, P̄(n)

y :=
{
IP(n)

θθθ,ηηη := IPn
fηηη
T (n)

θθθ

←
: θθθ ∈ Θ, ηηη ∈ IRp

})

is LAN at (θθθ,ηηη) = (θθθ0,000), with central sequence



∆∆∆(n)
θθθ0,f0

1√
n

∑n
t=1 ψψψf0

(F0(ε
(n)
t (θθθ0))) + E[ψψψf0

(U0)|U0 ≤ 1/2]sign
(
ε
(n)
t (θθθ0)

)


 , (6.8)

and Fisher information



If0(θθθ0) C̄
(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
C̄T Vψψψ −µµµ+

ψψψµµµ+T
ψψψ


 . (6.9)
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Proof of Lemma 6.1: Clearly, for each ηηη ∈ IRp we have fηηη(z) ≥ 0. Hence, for each

n ∈ IN, Ē(n)
y (f0) is a (parametric) subexperiment of E(n)

y . In order to establish the LAN

result, we need a few auxiliary calculations. First of all, observe that we can take a(000) = 1

and have b(000) = 0. Moreover, differentiation yields

∂

∂ηηη
fηηη(z)

∣∣∣∣
ηηη=000

= f0(z)
{
−µµµ+

ψψψ sign(z) + ψψψf0
(F0(z)) + b′(000)

}
.

Integrating this expression over the half-line (−∞, 0] and using
∫ 0
−∞ fηηη(z)dz = 1/2 yields

000 = µµµ+
ψψψ/2 + E

[
ψψψf0

(U)|U ≤ 1/2
]
+ b′(000),

which implies b′(000) = 000. Similarly, differentiating twice with respect to ηηη gives

∂2

∂ηηη2
fηηη(z)

∣∣∣∣∣
ηηη=000

= f0(z)
{[
−µµµ+

ψψψ sign(z) + ψψψf0
(F0(z))

] [
−µµµ+

ψψψ sign(z) + ψψψf0
(F0(z))

]T

−
(
a′(000)µµµ+T

ψψψ + µµµψψψa′(000)T
)

sign(z) + b′′(000)
}

.

which, by integrating over the real line, implies

b′′(000) = −
(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
.

To prove that the LAN condition holds for the subexperiment Ē(n)
y (f0) at the point

(θθθ,ηηη) = (θθθ0,000) ∈ ΘΘΘ × IRp, consider a sequence (hn)∞n=1 in IRk with hn → h as n → ∞,

and a sequence (gn)∞n=1 in IRp with gn → g as n → ∞. Observe that, as a result of

the Condition (LAN), the sequences of probability measures IP(n)

θθθ0+n−1/2hn,f000
and IP(n)

θθθ0,f000
are

contiguous.

Now, in view of the LAN condition on the parametric model, the definition of fηηη,

Condition (S), the contiguity mentioned above, and the result b′(0) = 0 and b′′(0) =
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−
(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
above, we obtain, under IP(n)

θθθ0,f0
and as n →∞,

log
dIP(n)

fgn/
√

n

(
T (n)←

θθθ0+hn/
√

n
(Y(n))

)

dIP(n)
f000

(
T (n)←

θθθ0
(Y(n))

)

= log
dIP(n)

fgn/
√

n

(
T (n)←

θθθ0+hn/
√

n
(Y(n))

)

dIP(n)
f000

(
T (n)←

θθθ0+hn/
√

n
(Y(n))

) + log
dIP(n)

f000

(
T (n)←

θθθ0+hn/
√

n
(Y(n))

)

dIP(n)
f000

(
T (n)←

θθθ0
(Y(n))

)

=
n∑

t=1

log
fgn/

√
n

f000

(
ε
(n)
t (θθθ0 + hn/

√
n)

)
+ hT

n∆∆∆(n)
θθθ0,f000

− 1
2
hT

n If000(θθθ0)hn + oIP(1)

= −a

(
gn√
n

)
gT

n√
n

n∑

t=1

µµµ+
ψψψ sign(ε(n)

t (θθθ0 + hn/
√

n))

+
gT

n√
n

n∑

t=1

ψψψf000(F000(ε
(n)
t (θθθ0 + hn/

√
n))) + nb

(
gn√
n

)

+ hT
n∆∆∆(n)

θθθ0,f000
− 1

2
hT

n If000(θθθ0)hn + oIP(1)

= − gT
n√
n

n∑

t=1

µµµ+
ψψψ sign(ε(n)

t (θθθ0)) + gT
nµµµ+

ψψψµµµ+
ψψψ C̄Thn

+
gT

n√
n

n∑

t=1

ψψψf000(F000(ε
(n)
t (θθθ0)))− gT

n VψψψC̄Thn

+
1
2
gT

n b′′(0)gn + hT
n∆∆∆(n)

θθθ0,f0
− 1

2
hT

n If0(θθθ0)hn + oIP(1)

=
[
hT

n ,gT
n

]



∆∆∆(n)
θθθ0,f000

1√
n

∑n
t=1 ψψψf000

(
F000(ε

(n)
t (θθθ0))

)
+ E[ψψψf000(U)|U ≤ 1/2]sign

(
ε
(n)
t (θθθ0)

)




− 1
2




hn

gn




T

ΣΣΣ




hn

gn


 + oIP(1),

where

ΣΣΣ :=




If000(θθθ0) −C̄µµµ+
ψψψµµµ+T

ψψψ + C̄Vψψψ

−µµµ+
ψψψµµµ+T

ψψψ C̄T + VψψψC̄T −b′′(0)


 .

Note that the quadratic term in the development indeed equals the asymptotic variance of

the linear term, as

Cov{ψψψf0
(U), sign(U − 1/2)} = µµµ+

ψψψ ,

which in turn implies

Var
(
ψψψf0

(F0(ε))−µµµ+
ψψψ sign(ε)

)
= Vψψψ −µµµψψψµµµT

ψψψ −µµµψψψµµµT
ψψψ + µµµψψψµµµT

ψψψ = Vψψψ −µµµψψψµµµT
ψψψ .
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Along the same lines, we find that the asymptotic covariance between the central sequence

∆∆∆(n)
θθθ0,f0

and
1√
n

n∑

t=1

ψψψf0

(
F0(ε

(n)
t (θθθ0))

)
−µµµ+

ψψψ sign
(
ε
(n)
t (θθθ0)

)

equals −C̄
(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
. This completes the proof of the lemma. ¤

We may now prove the semiparametric efficiency of the sign-and-rank statistic ∆∆∆
˜

(n)
θθθ,f in (3.12).

Proof of Theorem 4.1: Consider the parametric submodel as constructed in the pre-

vious lemma. From the convergence of local experiments to Gaussian shifts (which follows

from the ULAN condition), we know that locally and asymptotically optimal inference for

θθθ in this model, should be based on the p-dimensional upper block of



If0(θθθ0) C̄
(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
C̄T Vψψψ −µµµ+

ψψψµµµ+T
ψψψ



−1 


∆∆∆(n)

θθθ0,f0

1√
n

∑n
t=1 ψψψf0

(F0(ε
(n)
t (θθθ0)))−µµµ+

ψψψ sign
(
ε
(n)
t (θθθ0)

)




(i.e., the components corresponding to θθθ). Using the classical formula for partitioned in-

verses (see, e.g., Magnus and Neudecker, 1988, page 11), this p-dimensional upper block

is

(
If0(θθθ0)− C̄

(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
C̄T

)−1
{

∆∆∆(n)
θθθ0,f0

− C̄
1√
n

n∑

t=1

ψψψf0
(F0(ε

(n)
t (θθθ0)))−µµµ+

ψψψ sign
(
ε
(n)
t (θθθ0)

)}
.

From Theorem 3.1 we see that this equals

(
If0(θθθ0)− C̄

(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
C̄T

)−1
∆∆∆
˜

(n)
θθθ,f + oIP(1),

with ∆∆∆
˜

(n)
θθθ,f defined in (3.12). Observe also that, under IP(n)

θθθ0,f0
,

∆∆∆
˜

(n)
θθθ,f

L−→ N (0, If0(θθθ0)− C̄
(
Vψψψ −µµµ+

ψψψµµµ+T
ψψψ

)
C̄T ),

which completes the proof. ¤
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