171 research outputs found

    Admiration regulates social hierarchy:Antecedents, dispositions, and effects on intergroup behavior

    Get PDF
    In four studies, we report evidence that admiration affects intergroup behaviors that regulate social hierarchy. We demonstrate that manipulating the legitimacy of status relations affects admiration for the dominant and that this emotion negatively predicts political action tendencies aimed at social change. In addition, we show that greater warmth and competence lead to greater admiration for an outgroup, which in turn positively predicts deferential behavior and intergroup learning. We also demonstrate that, for those with a disposition to feel admiration, increasing admiration for an outgroup decreases willingness to take political action against that outgroup. Finally, we show that when the object of admiration is a subversive “martyr,” admiration positively predicts political action tendencies and behavior aimed at challenging the status quo. These findings provide the first evidence for the important role of admiration in regulating social hierarchy

    Tracking the global distribution of persistent organic pollutants accounting for e-waste exports to developing regions

    Get PDF
    Elevated concentrations of various industrial-use Persistent Organic Pollutants (POPs), such as polychlorinated biphenyls (PCBs), have been reported in some developing areas in subtropical and tropical regions known to be destinations of e-waste. We used a recent inventory of the global generation and exports of e-waste to develop various global scale emission scenarios for industrial-use organic contaminants (IUOCs). For representative IUOCs (RIUOCs), only hypothetical emissions via passive volatilization from e-waste were considered whereas for PCBs, historical emissions throughout the chemical life-cycle (i.e., manufacturing, use, disposal) were included. The environmental transport and fate of RIUOCs and PCBs were then simulated using the BETR Global 2.0 model. Export of e-waste is expected to increase and sustain global emissions beyond the baseline scenario, which assumes no export. A comparison between model predictions and observations for PCBs in selected recipient regions generally suggests a better agreement when exports are accounted for. This study may be the first to integrate the global transport of IUOCs in waste with their long-range transport in air and water. The results call for integrated chemical management strategies on a global scale

    Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model

    Get PDF
    Perfluorooctane Sulfonate (PFOS) and related substances have been widely applied in both industrial processes and domestic products in China. Exploring the environmental fate and transport of PFOS using modeling methods provides an important link between emission and multimedia diffusion which forms a vital part in the human health risk assessment and chemical management for these substances. In this study, the gridded fugacity based BETR model was modified to make it more suitable to model transfer processes of PFOS in a coastal region, including changes to PFOS partition coefficients to reflect the influence of water salinity on its sorption behavior. The fate and transport of PFOS in the Bohai coastal region of China were simulated under steady state with the modified version of the model. Spatially distributed emissions of PFOS and related substances in 2010 were estimated and used in these simulations. Four different emission scenarios were investigated, in which a range of half-lives for PFOS related substances were considered. Concentrations of PFOS in air, vegetation, soil, fresh water, fresh water sediment and coastal water were derived from the model under the steady-state assumption. The median modeled PFOS concentrations in fresh water, fresh water sediment and soil were 7.20ng/L, 0.39ng/g and 0.21ng/g, respectively, under Emission Scenario 2 (which assumed all PFOS related substances immediately degrade to PFOS) for the whole region, while the maximum concentrations were 47.10ng/L, 4.98ng/g and 2.49ng/g, respectively. Measured concentration data for PFOS in the Bohai coastal region around the year of 2010 were collected from the literature. The reliability of the model results was evaluated by comparing the range of modeled concentrations with the measured data, which generally matched well for the main compartments. Fate and transfer fluxes were derived from the model based on the calculated inventory within the compartments, transfer fluxes between compartments and advection fluxes between sub-regions. It showed that soil and costal water were likely to be the most important sinks of PFOS in the Bohai costal region, in which more than 90% of PFOS was stored. Flows of fresh water were the driving force for spatial transport of PFOS in this region. Influences of the seasonal change of fresh water fluxes on the model results were also analyzed. When only seasonal changes of the fresh water flow rates were considered, concentrations of PFOS in winter and spring were predicted to be higher than that under annual average conditions, while the concentrations in summer and autumn were lower. For PFOS fluxes entering the sea, opposite conclusions were drawn compared to the concentrations. Environmental risks from the presence of PFOS in fresh water were assessed for this region through comparison with available water quality criteria values. The predicted concentrations of PFOS in the Bohai coastal region provided by the model were lower than the water quality criteria published by the United States Environmental Protection Agency and Chinese researchers, while the concentrations in more than 80% of the sampling locations exceeded the European Union Water Framework Directive Environmental Quality Standards values. Seasonal variations of flow rate might cause a significant increase in environmental risks

    Environmental distributions of benzo[a]pyrene in China:current and future emission reduction scenarios explored using a spatially explicit multimedia fate model

    Get PDF
    SESAMe v3.0, a spatially explicit multimedia fate model with 50 × 50 km(2) resolution, has been developed for China to predict environmental concentrations of benzo[a]pyrene (BaP) using an atmospheric emission inventory for 2007. Model predictions are compared with environmental monitoring data obtained from an extensive review of the literature. The model performs well in predicting multimedia concentrations and distributions. Predicted concentrations are compared with guideline values; highest values with some exceedances occur mainly in the North China Plain, Mid Inner Mongolia, and parts of three northeast provinces, Xi'an, Shanghai, and south of Jiangsu province, East Sichuan Basin, middle of Guizhou and Guangzhou. Two potential future scenarios have been assessed using SESAMe v3.0 for 2030 as BaP emission is reduced by (1) technological improvement for coal consumption in energy production and industry sectors in Scenario 1 (Sc1) and (2) technological improvement and control of indoor biomass burning for cooking and indoor space heating and prohibition of open burning of biomass in 2030 in Scenario 2 (Sc2). Sc2 is more efficient in reducing the areas with exceedance of guideline values. Use of SESAMe v3.0 provides insights on future research needs and can inform decision making on options for source reduction

    Can poly-parameter linear-free energy relationships (pp-LFERs) improve modelling bioaccumulation in fish?

    Get PDF
    A wide range of studies have characterized different types of biosorbent, with regards to their interactions with chemicals. This has resulted in the development of poly-parameter linear free energy relationships (pp-LFER) for the estimation of partitioning of neutral organic compounds to biological phases (e.g., storage lipids, phospholipids and serum albumins). The aims of this study were to explore and evaluate the influence of implementing pp-LFERs both into a one-compartment fish model and a multi-compartment physiologically based toxicokinetic (PBTK) fish model and the associated implications for chemical risk assessment. For this purpose, fish was used as reference biota, due to their important role in aquatic food chains and dietary exposure to humans. The bioconcentration factor (BCF) was utilized as the evaluation metric. Overall, our results indicated that models incorporating pp-LFERs (R2 = 0.75) slightly outperformed the single parameter (sp) LFERs approach in the one-compartmental fish model (R2 = 0.72). A pronounced enhancement was achieved for compounds with log KOW between 4 and 5 with increased R2 from 0.52 to 0.71. The little improvement was caused by the overestimation of lipid contribution and underestimation of protein contribution by sp-approach, which cancel each other out. Meanwhile, a greater improvement was observed for multi-compartmental PBTK models with consideration of metabolism, making all predictions fall within a factor of 10 compared with measured data. For screening purposes, the KOW-based (sp-LFERs) approach should be sufficient to quantify the main partitioning characteristics. Further developments are required for the consideration of ionization and more accurate quantification of biotransformation in biota

    Modelling the time-variant dietary exposure of PCBs in China over the period 1930 to 2100

    Get PDF
    This study aimed for the first time to reconstruct historical exposure profiles for PCBs to the Chinese population, by examining the combined effect of changing temporal emissions and dietary transition. A long-term (1930-2100) dynamic simulation of human exposure using realistic emission scenarios, including primary emissions, unintentional emissions and emissions from e-waste, combined with dietary transition trends was conducted by a multimedia fate model (BETR-Global) linked to a bioaccumulation model (ACC-HUMAN). The model predicted an approximate 30-year delay of peak body burden for PCB-153 in a 30-year-old Chinese female, compared to their European counterpart. This was mainly attributed to a combination of change in diet and divergent emission patterns in China. A fish-based diet was predicted to result in up to 8 times higher body burden than a vegetable-based diet (2010-2100). During the production period, a worst-case scenario assuming only consumption of imported food from a region with more extensive production and usage of PCBs would result in up to 4 times higher body burden compared to consumption of only locally produced food. However, such differences gradually diminished after cessation of production. Therefore, emission reductions in China alone may not be sufficient to protect human health for PCB-like chemicals, particularly during the period of mass production. The results from this study illustrate that human exposure is also likely to be dictated by inflows of PCBs via the environment, waste and food

    Comparing measured and modelled PFOS concentrations in a UK freshwater catchment and estimating emission rates

    Get PDF
    The lifecycle, sources and fate of perfluorooctane sulfonate (PFOS) continue to generate scientific and political interest, particularly since PFOS was listed by the Stockholm Convention and largely restricted in Europe. It continues to be detected in aquatic environments, with only limited studies into the on-going sources. This paper explores PFOS emissions discharged by the general population into a small catchment comprising two rivers in the UK. A sampling campaign was undertaken to improve our understanding of population-derived PFOS sources from sewage treatment plants (STPs) and in rivers. A corresponding modelling exercise allowed an emission estimate of 13 μg/day/per capita to be derived for the Aire and Calder rivers. PFOS emission was linked to STP discharges bylinear regression of measured and modelled concntrations (R2 = 0.49–0.85). The model was able to accurately estimate the spatial trends of PFOS in the rivers, while predicted concentrations were within a factor of three based on per capita emission values taken from the literature. Measured PFOS concentrations in rivers suggested that emissions from STPs are partially dependent on treatment type, where plants with secondary or tertiary treatment such as activated sludge processes emit less PFOS, possibly due to increased partitioning and retention. With refinements based on the type of treatment at each STP, predictions were further improved. The total PFOS mass discharged annually via rivers from the UK has been estimated to be between 215 and 310 kg, based on the per capita emission range derived in this study

    Pesticides contaminated dust exposure, risk diagnosis and exposure markers in occupational and residential settings of Lahore, Pakistan

    Get PDF
    There are few studies documenting the dust loaded with pesticides as a potential non-dietary exposure source for occupational worker and populations living near agricultural farms and pesticides formulation plants. In present study we have evaluated the pesticide concentration in dust from potential sites and relevant health risk from dust ingestion. Furthermore, the effect of currently used pesticides was investigated on blood and urine parameters of subjects: farmer, factory worker, urban resident and rural resident and controlled subjects with presumably different levels of exposure. The urinary metabolites (TCPY and IMPY) were quantified as biomarkers of exposure to chlorpyrifos and diazinon in relation with biomarkers of effect including BuChE, LH, FSH, testosterone and oxidative stress. Results showed that chlorpyrifos and diazinon were present in higher concentration in dust and posed a high health risk to exposed subjects. The mean SOD value was high among the farmer (3048 U/g Hb) followed by factory worker (1677.6U/g Hb). The urinary biomarkers – TCPY and IMPY- were found higher in exposed subjects as compared to control. Furthermore, testosterone was found in higher concentration in factory worker than control (12.63 ng/ml vs 4.61 ng/ml respectively). A decreased BuChE activity was noticed in occupational group and significant differences were observed in control verses exposed subjects. The PCA analysis evidenced the impact of pesticides on exposure biomarkers and male reproductive hormones. The study suggests that dust contaminated with pesticides engenders significant health risk particularly related to the nervous and endocrine system, not only for occupational workers exposed to direct ingestion but also for nearby residential community. Succinctly putting: Pesticides loaded dust in the city of Lahore, being a high priority concern for the government of Pakistan, demands to be addressed

    Impacts of soil and water pollution on food safety and health risks in China

    Get PDF
    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to ‘cancer villages’ which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach
    corecore