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 Abstract 19 

A wide range of studies have characterized different types of biosorbent, with regards to their 20 

interactions with chemicals. This has resulted in the development of poly-parameter linear free 21 

energy relationships (pp-LFER) for the estimation of partitioning of neutral organic compounds 22 

to biological phases (e.g., storage lipids, phospholipids and serum albumins). The aims of this 23 

study were to explore and evaluate the influence of implementing pp-LFERs both into a one-24 

compartment fish model and a multi-compartment physiologically based toxicokinetic (PBTK) 25 

fish model and the associated implications for chemical risk assessment. For this purpose, fish 26 

was used as reference biota, due to their important role in aquatic food chains and dietary 27 

exposure to humans. The bioconcentration factor (BCF) was utilized as the evaluation metric. 28 

Overall, our results indicated that models incorporating pp-LFERs (R2=0.75) slightly 29 

outperformed the single parameter (sp) LFERs approach in the one-compartmental fish model 30 

(R2=0.72). A pronounced enhancement was achieved for compounds with log KOW between 4 31 

and 5 with increased R2 from 0.52 to 0.71. The little improvement was caused by the 32 

overestimation of lipid contribution and underestimation of protein contribution by sp-approach, 33 

which cancel each other out. Meanwhile, a greater improvement was observed for multi-34 

compartmental PBTK models with consideration of metabolism, making all predictions fall 35 

within a factor of 10 compared with measured data. For screening purposes, the KOW-based (sp-36 

LFERs) approach should be sufficient to quantify the main partitioning characteristics. Further 37 

developments are required for the consideration of ionization and more accurate quantification 38 

of biotransformation in biota. 39 

  40 
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Graphical abstract 41 

 42 

Highlights 43 

• Incorporating pp-LFERs approach into fish model resulted in greater improvement in the 44 

PBTK fish model than that in one-compartment fish model. 45 

• sp-LFERs approach overestimated the lipid contribution and underestimated protein 46 

contribution to the total partition between fish and water, which cancelled out each other.  47 

• Large uncertainties are caused by quantification of biotransformation. 48 

• Uncertainties in screening assessments are larger than differences between the pp-LFER 49 

and sp-LFER models. 50 

Keywords 51 

Partition coefficients, pp- LFER, bioaccumulation, biotransformation 52 
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1 Introduction 54 

Bioaccumulation in aquatic species is a critical endpoint in the regulatory assessment  required 55 

by authorities, such as the European Chemical Agency (ECHA) and the United States 56 

Environmental Protection Agency (Gobas et al., 2009). One widely used assessment metric is 57 

the bioconcentration factor (BCF), which assesses the bioaccumulative potential of a chemical 58 

to biota through constant aqueous exposure under well-controlled laboratory conditions 59 

(Mackay et al., 2013). One principle of the Registration, Evaluation, Authorization and 60 

Restriction of Chemicals (REACH) regulation is that testing of chemicals on animals should be 61 

a last choice (Van der Jagt et al., 2004; Parliament and Union, 2006; Laue et al., 2014). Much 62 

effort has been devoted to developing predictive models to estimate BCFs, where no in vivo 63 

data are available. Typically, chemical is preliminary screened and assessed  based on 64 

physicochemical properties, like octanol-water partitioning coefficient (KOW). It’s widely used 65 

as an indicator of hydrophobicity and thus the partitioning of a chemical from water to lipids 66 

and other organic phases (e.g., protein) (Debruyn and Gobas, 2007). 67 

Equilibrium partition coefficients for organic chemicals from environmental compartments to a 68 

tissue/organism are normally estimated by the total lipid content in combination with the KOW 69 

(Mackay, 2001). So chemical concentrations in an organism/tissue are often normalized to the 70 

total lipid content, assuming that all lipids have identical sorption properties and the non-lipid 71 

fraction has a negligible sorption capacity (Endo et al., 2013). However, the suitability of this 72 

simplified approach has been questioned (Hermens et al., 2013; Endo and Goss, 2014a). It has 73 

been reported that the sorption capacity varies among different types of lipids (e.g., storage and 74 

membrane lipids) (Endo et al., 2011). Furthermore, the non-lipid components (e.g., proteins and 75 

serum) could also be a significant accumulation phase for organic compounds, especially for the 76 

H-bond donor compounds (Endo et al., 2012). More importantly, correlations with KOW are 77 

expected to be valid only for restricted chemical domains (Hermens et al., 2013). As attention 78 

on contaminants in the environment with more complex structures, like hormones, 79 
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pharmaceuticals and surfactants grows, the task to go beyond KOW and explore more refined 80 

approaches to mechanistically modelling bioaccumulation is urgently needed. 81 

Much effort has been made for the exploration and development of poly-parameter linear free 82 

energy relationships (pp-LFER), which could account for the contribution of different specific 83 

and non-specific inter-molecular interactions (Abraham et al., 1994; Abraham et al., 2015). 84 

Undeman et al. (2011) estimated the total sorption capacity of the human body directly using 85 

the pp-LFERs calibrated for composite tissues/organs, showing limited benefit over the 86 

traditional sp-LFERs approach (Undeman et al., 2011). This could be attributed to the 87 

unavailability of different pp-LFERs equations in individual biological phase (e.g., neutral lipid, 88 

phospholipid and protein) at that time.  A single pp-LFER for partitioning to composite 89 

tissue/organ (e.g., blood, liver and brain) they used, which may only work well for the 90 

calibrated chemicals. If a very diverse set of study chemicals out of the calibration domain was 91 

applied to pp-LFERs of composite tissue/organ, large errors may occur. For instance, models 92 

calibrated by data set from very polar compounds, which predominately partition into the 93 

aqueous phase, may not work well in a biological phase calibrated by compounds mainly 94 

partitioning to lipid (Geisler et al., 2011). Thus, if different chemicals have different preferred 95 

phases within a composite material (e.g., fat tissue is a composite material mainly made up by 96 

water, neutral lipid, phospholipid and protein), a pp-LFERs need to be established for individual 97 

biological phase instead of the whole bulk compartment. However, the individual pp-LFER for 98 

a separate biological phase was not available previously. 99 

Recently, a number of studies have characterized different types of lipids, with regards to their 100 

chemical interactions (Endo et al., 2011; Geisler et al., 2012). Meanwhile, pp-LFERs for 101 

estimation of partitioning of neutral organic compounds to biological phases have also been 102 

calibrated, e.g., storage lipids (Geisler et al., 2012), phospholipids (Endo et al., 2011), serum 103 

albumins (Endo and Goss, 2011a) and muscle protein (Endo et al., 2012). In addition, 104 

preliminary evaluation has been carried out to directly compare partition coefficients to tissues 105 

calculated by pp-LFER models and KOW-based models, indicating an order-of-magnitude 106 
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approximation (Endo et al., 2013). Furthermore, another initial evaluation was conducted to 107 

examine the effect of pp-LFERs approaches on pharmacokinetic (PBPK) models (Salmina et al., 108 

2016). But they did not incorporate metabolic transformation, which would be a critical issue 109 

for rapidly metabolized compounds. Consequently, a comprehensive study to explore their 110 

benefit for the prediction of bioaccumulation potential and interpretation of biomonitoring 111 

results is desirable. 112 

The main objective of this study was to explore the influence of implementing pp-LFERs on the 113 

estimation of bioconcentration factors in different types of fish model. Fish were used as a 114 

reference biota due to their important role in human daily diet and the fact that they act as an 115 

essential biosorbent for organic chemicals. Additionally, enough data availability exists for 116 

model evaluation compared to other species. In this study, two types of fish model: a one-117 

compartment fish model (Arnot and Gobas, 2004) and a multi-compartment physiologically 118 

based toxicokinetic (PBTK) model (Nichols et al., 1990) were set up with incorporated sp or pp-119 

approaches. Differences between model outputs were evaluated, and predicted BCFs were used 120 

to compare with measured BCFs. The implications for research and regulatory practices with 121 

regard to chemical risk assessment are also discussed. 122 

2 Methods 123 

2.1 General approach 124 

Two types of mechanistic fish models were selected in this study, the one-compartment fish 125 

model (Arnot and Gobas, 2004), which assumes the chemical concentration is the same 126 

throughout the organism, and the multi-compartment PBTK model (Nichols et al., 1990), which 127 

considers chemical concentration may differ between various organs and tissues. Their selection 128 

in the chemical risk assessment depends on the question being addressed and the ease of data 129 

collection under different scenarios (Landrum et al., 1992). The one-compartment model is 130 

suitable for preliminary risk assessment with simple inputs, while the multi-compartment model 131 

is preferred in higher-tier assessments to quantify organ-specific concentration. These two 132 
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representative models were implemented under both traditional sp-LFER (traditional KOW -133 

driven) and newly-developed pp-LFERs to explore their performance in term of BCF prediction. 134 

To eliminate difference caused by input parameters, the only distinction between these two 135 

approaches of pp-LFERs and sp-LFERs models, is the way of calculating partition coefficients 136 

to tissues/organs. All other equations and parameterizations were not modified in these two 137 

modelling approaches. Firstly, both models were run using a set of chemicals with the same 138 

measured descriptors. Thus, the potential errors in the measurement of chemical descriptors will 139 

be eliminated by using the same chemical descriptors for both approaches. Then the compiled 140 

dataset with measured BCFs was used as the endpoint to compare with the model predictions. 141 

Only chemicals present in neutral form in natural water were considered in this evaluation 142 

process. 143 

2.2 General fish model 144 

2.2.1 One-compartment model 145 

For the one-compartment model, fish was described as a well-mixed compartment and thus the 146 

target chemical was assumed to be homogeneous in the whole fish body. In this type model, 147 

KOW was regarded as a surrogate of lipid to quantify partition process. Chemical concentration 148 

in fish (Cb, kg kg-1) could be modelled using following first-order equation: 149 

dCb/dt=kuCw-keCb (1) 

  

where ku is the uptake rate constant via gill ventilation (L kg-1 d-1), Cw is the truly dissolved 150 

chemical concentration in the water column (kg L-1). ke is the total elimination rate constant (d-1), 151 

including respiratory exchange back to water (kw), fecal egestion (kf), biotransformation (km) and 152 

growth dilution (kg). These four elimination rate constants were calculated following the same 153 

treatment of Arnot fish model (Arnot and Gobas, 2004). In this study, the organism was 154 

assumed to be fed completely “clean” food during the entire exposure period. Though the 155 

dietary uptake could be omitted from a BCF model, fecal egestion should be included to 156 
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account for the redistribution of the target compound between the organism and its gut 157 

(Armitage et al., 2013). The detailed parameterization is contained in Table S1. The steady-state 158 

condition was assumed. So BCFs were used to compare the difference between predicted and 159 

observed values. Under steady state (dCb/dt=0), chemical concentrations in the organism and 160 

BCF could be calculated by: 161 

Cb=kuCw/ke (2) and BCF=Cb/Cw=ku/ke (3) 162 

In all calculations, the diet was assumed to be 1.5% total lipid (1.2% neutral lipid, 0.3% 163 

phospholipid for pp-LFER calculation), 15% non-lipid organic matter (NLOM) and 83.5% 164 

water (Armitage et al., 2013). Mass-based tissue fractions were converted to volume-based 165 

tissue fractions assuming densities of 0.9, 0.9, 1.0 and 1.0 kg L-1 for neutral lipid, phospholipid, 166 

NLOM and water, respectively. 167 

2.2.2 Multi-compartment PBTK model 168 

Chemical accumulation by fish can also be simulated by the physiologically based toxicokinetic 169 

(PBTK) fish model developed by Nichols and co-workers, which treats whole fish with 170 

individual compartments, like adipose, liver and kidney separately (Nichols et al., 1990). It is 171 

particularly useful to predict chemical concentration when a specific tissue/organ is the 172 

dominant site of action. The rainbow trout was used as a reference fish, due to being used as a 173 

standard fish in many studies and has relatively abundant data. Detailed parameterizations were 174 

presented in Table S5 but are also presented elsewhere (Nichols et al., 2007). The amount of the 175 

chemical in each compartment is calculated using the following relationship: 176 

dAi/dt=Qi ×(Cart-Cvi) (4) 

where Ai is the chemical amount in compartment i (µg), Qi is the arterial blood flow to 177 

compartment i (L h-1), Cart is the chemical concentration in arterial blood (µg L-1), Cvi is the 178 

chemical concentration in venous blood after compartment i (µg L-1). 179 

Cb=∑Ai/BW (5) 
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where Cb is the average chemical concentration in the whole fish body (µg kg-1), ∑Ai is the 180 

chemical amount in all compartments (µg), BW is the body weight of fish (kg). 181 

In order to facilitate the comparison, the PBTK model employed several empirical relationships 182 

provided by (Arnot and Gobas, 2004), including the calculation of Cwd (dissolved chemical 183 

concentration in water), Cd (chemical concentration Cd=0 in diet, assuming only ingesting 184 

completely “clean” food), Gv (total ventilation volume) and partition coefficient between fish 185 

and water (Kfish/water). The considered compartment includes the liver, fat, kidney, richly perfused 186 

compartment and poorly perfused compartment for rainbow trout.  187 

2.3 Biotransformation 188 

In general, models require information on metabolic biotransformation to improve estimation 189 

for chemicals that are subject to biotransformation (Arnot et al., 2008). Even slow rates of 190 

biotransformation may significantly affect bioaccumulation in fish (Mackay et al., 2013). So the 191 

treatment of biotransformation was considered and described in detail as below for the two 192 

types of fish model. However, the measured data and available models for estimating 193 

biotransformation rates (both whole body and tissue-specific) were extremely limited (Nichols 194 

et al., 2006). The extrapolation approach described below is a first approximation and should be 195 

used with caution due to the high uncertainty. 196 

2.3.1 One – compartment model 197 

For the one-compartment model, the experimental biotransformation rate constants (km) were 198 

selected preferentially to predicted values from BCFBAF submodel in EPISuite (US EPA, 199 

2012), which was normalized to a 10 g fish at 15 ℃. These were converted to mass and 200 

temperature specific km,x value as (US EPA, 2012): 201 

kM, X =kM (WX/ WN)-0.25×exp (0.01×(TX-TN))  (6) 

where Wx is the study-specific mass of the organism (kg), WN is the normalized mass of the 202 

organism (0.01 kg), Tx is the study-specific temperature, TN is the normalized water temperature 203 

(15 ℃). 204 
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2.3.2 Multi-compartmental model 205 

For the PBTK model, the whole-body metabolism rate km taken from the EPISuite database (US 206 

EPA, 2012) was used to back-calculate the metabolism rate in liver. Experimental values were 207 

also preferred and used where possible. Thus, the hepatic clearance (CLH, L h-1 kg-1) was 208 

expressed as below and was normalized to the weight of fish: 209 

CLH=km×Vd,blood (7) 

where the Vd,blood (L kg-1) is the apparent volume of distribution, referenced to the chemical 210 

concentration in mixed blood. This could be regarded as the sorption capacity of the fish 211 

relative to that of blood, and can be approximated by dividing the Kfish-water by Kblood-water (Nichols 212 

et al., 2006). If the rate of biotransformation is very high, then the CLH is rate-limited by the 213 

total blood flow to the liver (Nichols et al., 1990). This is just a first approximation of 214 

extrapolation of biotransformation rates, since it will be affected by many factors, e.g., the extra 215 

hepatic metabolism and protein binding (Nichols et al., 2007). 216 

2.4 General pp-LFERs 217 

Poly-parameter linear free energy relationship (pp-LFERs) are multiple linear regression models 218 

that use several solute- or sorbate-specific descriptors as independent variables (Endo and Goss, 219 

2014a). There are three widely used forms of pp-LFERs expressed as:  220 

log K =c+sS+aA+bB+vV+eE     (8) 

log K =c+eE+sS+aA+bB+lL (9) 

log K=c+sS+aA+bB+vV+lL (10) 

where K is the partition coefficient between two phases. Equation (8) is used for partitioning 221 

between a condensed phase and a gas phase, and Equation (9) is used for partitioning between 222 

two condensed phases. The capital letters stand for the chemical descriptors: S refers to 223 

dipolarity/polarizability, A and B are the hydrogen bond acidity and basicity, L is the logarithm 224 

of the partition coefficient between hexadecane and air, E is the excess molar refraction (cm3 225 

mol−1/10), and V refers to the McGowan volume (cm3 mol−1/100). The lower cases letters s, a, b, 226 
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v, and l are regression coefficients and c is the regression constant, which indicate the 227 

complementary properties of the partitioning system. The Equation (10) uses V and L and has 228 

the advantage of wider application to organosilicons and highly fluorinated compounds (Endo 229 

and Goss, 2014b). It is therefore preferred to be used. The selected pp-LFERs in this study are 230 

summarized in Table S3. It is generally expected that the extrapolation of a model beyond its 231 

calibrated domain may cause larger prediction errors than that would be expected for 232 

interpolation. Special caution should be taken for the serum albumin, whose fitting to data was 233 

not as good as other biological systems (Endo and Goss, 2011b). The ranges of individual 234 

descriptors used in each equation are summarized in Table S6 for each biological system in this 235 

study. 236 

2.5 Implementation of pp-LFERs 237 

2.5.1 Incorporating pp-LFERs in the one-compartment model 238 

In the one-compartment model, the partition coefficient between fish and water is quantified as 239 

(Arnot and Gobas, 2004): 240 

Kfish/water= ( flipid/ Dwater+ fNLOM×β/DNOLM) Kow+fwater (11) 

where flipid, fNLOM and fwater are the volume fractions of lipid, non-lipid organic matter (NLOM) 241 

and water, as quantified in Table S2; β is the proportionally constant of NLOM to octanol, Dwater 242 

and DNOLM are the densities of lipid and non-lipid organic matter.  243 

Replacing the sp-LFERs by pp-LFERs, the partition coefficients are modified as: 244 

Kfish/water=(Kstorage lipid/water×f storage lipid/Dlipid)+ (Kphospholipid/water×fphospholipid/Dphospolipid)+  

(Kprotein/water×fprotein/Dprotein+ fwater/Dwater) 

(12) 

where fstorage lipid , fphospholipid and fprotein are the volume fractions of storage lipid, phospholipid and 245 

protein of fish defined in Table S4, K values indicate the individual partition coefficients 246 

between target biological medium and water, and D is the corresponding density of each tissue. 247 

The densities of storage (neutral) lipid, phospholipid, protein and water are assumed to be 0.93, 248 
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1, 1.4 and 1 kg L-1 (Endo et al., 2013). A similar treatment was performed for the partition 249 

coefficient between gut and fish (Kgut-fish). 250 

2.5.2 Incorporating pp-LFERs into PBTK model 251 

In the PBTK model, the Kblood-water was derived as (Bertelsen et al., 1998): 252 

Kblood/water=100.72× log Kow +1.04 Log (αb)+γb (13) 

where the αb is the lipid content of blood tissue, γb is the water content of blood tissue and other 253 

partition coefficients Korgan/blood, including Kliver/blood, Kfat/blood, Kmuscle/blood and K kidney/blood, are 254 

calculated from Kblood/water as: 255 

Korgan/blood= (100.72×Log Kow +1.04 Log (αi)+0.86+γi)/ Kblood/water (14) 

Where the αi and γi are the lipid and water contents in the individual organ. The composition of 256 

each organ was as assumed to the defaults for rainbow trout in the original PBTK model. But in 257 

pp-LFER PBTK model, the Korgan/water was calculated based on the biological composition of 258 

each organ, mainly containing neutral lipid, phospholipid, protein and water. The specific 259 

composition of each biological compartment (e.g., blood, kidney and liver) is presented in Table 260 

S5. It was assumed here that total lipid only contains neutral lipid and phospholipid. The 261 

fraction of bovine serum albumin (BSA) was selected from a study based on mammals (Endo et 262 

al., 2013). The treatment of fat content in lean tissues (all compartments exclude the fat) and the 263 

temperature dependence of partitioning is detailed in the supporting information. The bovine 264 

serum albumin was only considered to be present in the blood tissue, since its existence is fairly 265 

minimal and its variation may increase the model uncertainty. The Korgan/blood was calculated in 266 

the pp-LFERs approach as: 267 

Korgan/blood=Korgan/water /Kblood/water (15) 

2.6 Solute descriptors 268 

Experimentally measured solute descriptors are available for thousands of chemicals and have 269 

been compiled as a free-of-charge database (http://www.ufz.de/index.php?en=31698). The 270 

initial chemical dataset including 235 compounds (Brown and Wania, 2009), were selected 271 
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from 1460 individual chemicals which were considered to fall within the range environmentally 272 

relevant compounds. Several updated experimental values of descriptors were also added from 273 

the recently published literature to cover more polar and complex chemicals, including 274 

organosilicon compounds, highly polyfluorinated chemicals, flame retardants (e.g., 275 

polybrominated diphenyl ethers, hexabromocyclododecane, bromobenzenes, trialkyl 276 

phosphates), pesticides, polychlorinated biphenyls (PCBs) and heterocyclic aromatic as well as 277 

nitroaromatics compounds (Geisler et al., 2011; Stenzel et al., 2013a, b). Ionization was not 278 

taken into account in this study, as the pp-LFER approaches to ionic chemicals are still a subject 279 

of on-going research. No successful application to environmental and biological processes have 280 

been reported so far (Endo and Goss, 2014a). Selected chemicals were categorized into different 281 

polarities according to A and B values defined here: nonpolar (both A and B ≤ 0.2), monopolar 282 

(including H-bond acceptor (A >0.2 but B <0.2) or H-bond donor (A <0.2 but B>0.2), and 283 

bipolar (both A and B >0.2) compounds. Their individual impact on pp-LFERs is characterized. 284 

Two subsets of compounds were added to the whole dataset. One represented chemicals with 285 

strong H-donor function (A>0.3), because substantial differences in the “aA” term have been 286 

observed for the pp-LFER equations for octanol and storage lipids for this type of chemical. 287 

Thus, partitioning to octanol and storage lipid are expected to be different, which contrasts with 288 

most typical assumptions that the octanol is a good surrogate for lipids. The other subset 289 

contained complex compounds with more than one polar functional group per molecule. The 290 

selected compounds cover hormones and hormone active compounds (e.g., estrone, bisphenol A, 291 

phthalate esters), fungicides, herbicides and mycotoxins. The representative functional groups 292 

included alcohol, amide, carbonyl, nitrite, ester, epoxide and phenyl groups. Ignorance of 293 

ionization could potentially generate uncertainty, since the partitioning behaviour of ionic 294 

species is different from neutral species (Abraham and Acree, 2010).  295 

2.7 Compilation of measured BCFs dataset 296 

The main source of observed BCF data was extracted from Arnot and Gobas (2006). It contains 297 

multiple BCF measurements for chemicals in different fish species with varying physiological 298 
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conditions, which reflect realistic variations in BCFs across different fish species and system 299 

conditions. The dataset mainly contained nonpolar compounds and was firstly used to test the 300 

model performance for the one-compartment model (Arnot and Gobas, 2004). The majority of 301 

data points are from studies using common carp (Cyprinus carpio), fathead minnow 302 

(Pimephales promelas), zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss).The 303 

chemicals with observed BCFs from studies in rainbow trout were extracted to produce a subset 304 

of 41 distinct compounds and 355 data points, which was used to evaluate the PBTK model 305 

under sp and pp approaches requiring specific physical fish information. In addition, other 306 

publicly available data were also compiled to cover additionally observed BCFs for complex 307 

polar chemicals, such as the Pesticide Property Database 308 

(http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm). It is ideal to have study-specific experimental 309 

information water temperature, fish weight, and lipid content to predict individual BCF values. 310 

However, many studies did not record such information. Consequently, a value of 5% was used 311 

as a first approximation of whole body lipid content (Arnot and Gobas, 2006). All selected 312 

experimental BCF values were lipid normalized. 313 

2.8 Inter-comparison of models 314 

A difficult task is to systematically compare the results from pp-LFER and sp-LFER models. 315 

One approach is to compare the predicted results directly (Gotz et al., 2007). Here, we used 316 

space maps to present the variations in models outputs as a function of partition coefficients, 317 

like KAW, KOA and KOW (Brown and Wania, 2009). Firstly, the entire dataset was used to 318 

compare the predicted values of partition coefficients calculated by sp/pp-approach and the 319 

predicted concentration in fish. Individual contributions of different forms of intermolecular 320 

interaction to partitioning from organs/tissues to water can be compared to explore the dominant 321 

interactions. The statistical analysis was conducted using average model bias (MB) and average 322 

absolute model bias (AMB) to assess model performance as calculated below: 323 
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where BCFM is the modelled bioconcentration factor, BCFE is the measured bioconcentration 324 

factor, n is the number of observations, ABS means the absolute deviation. MB represents the 325 

average factor by which the model output deviates from the observation. It is useful to indicate 326 

the direction of any systematic bias. The root mean square error (RMSE) and the square of 327 

correlation coefficient (R2) were also used to characterize model performance. 328 

In this study, the only difference between model inputs is the replacement of octanol-based sp-329 

LFER with pp-LFERs. Therefore, any observed differences will be attributable to this 330 

difference. The experimental errors in measuring the partitioning coefficients were not 331 

considered in this study. In order to keep the inputs same and reduce the uncertainty from the 332 

measurement of KOW (Linkov et al., 2005), KOW used in sp-LFERs was also derived from pp-333 

LFERs instead of using measured KOW values. 334 

3 Results & Discussion 335 

3.1 Comparison of outputs by the sp/pp-approaches 336 

In order to identify the types of chemicals for which the implementation of pp-LFERs would 337 

make a significant difference, the predicted concentration of fish and partition coefficients were 338 

compared for chemicals possessing a wide range of partitioning properties using the solute 339 

descriptors. The results are presented in chemical partitioning plots as a function of the 340 

chemicals’ octanol-air-water partitioning properties, described by KAW and KOA (Figure 1). In 341 

addition, the influence of the polarity is also illustrated in Figure 1 (a, b). The different 342 

categories of nonpolar, monopolar and bipolar compounds were defined based on the descriptor 343 

values of A and B in Section 2.6. A quantitative assessment of the relative contribution of the 344 
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different solute descriptors in the pp-LFERs for the partition coefficients was presented in 345 

Figure S2. 346 

 347 

Figure 1. Comparison of calculated logarithmic fish-water partition coefficients (a) and blood-348 

water partition coefficients (b) by pp-LFERs and sp-LFERs values with different defined 349 

polarities. The multiple colours and symbols represented different polarities defined by A and B. 350 

For nonpolar compounds, both A and B ≤0.2 (N=156); for monopolar compounds, either A or B 351 

is >0.2 (N=224); for bipolar compounds, both A and B >0.2 (N=108). Chemical partitioning 352 

space plots indicated the ratios of partition coefficient between water and whole fish (c) also 353 

blood (d); concentrations in fish calculated using sp and pp approach in one-compartment model 354 

(e) and in multi-compartment PBTK models (f). Different colours indicated the magnitude of 355 

the quotient. The diagonal lines indicate the log KOW equal to 0, 4 and 7. 356 
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3.1.1 Comparison of Kfish-water by the sp/pp-approaches 357 

In general, the log Kfish/water was estimated consistently via both approaches. 99% of selected 358 

substances the observed differences was less than one log unit. Compounds with different 359 

polarities indicated slightly different deviations as in Fig 1. For all nonpolar compounds in the 360 

dataset, the Kfish/water value calculated by pp-LFERs was larger than that calculated by sp-LFERs. 361 

However, the compounds with bipolar functional groups tended to show a larger difference 362 

between Kfish/water calculated by these two approaches. The largest difference of log Kfish-water was 363 

observed for bis(2-ethylhexyl) hydrogen phosphate, up to 1.5 log unit, with a strong H-bond 364 

donor/acceptor (A=0.96, B=1.12). Its log Klipid/water was less than log KOW by 2 log units, leading 365 

to the large deviation of calculated Kfish-water. The overestimation of BCFs may be expected for 366 

such type of compounds by directly using Kow. 367 

When looking at the dependency of deviation with the different range of log KOW values (Figure 368 

1-c), the discrepancy also gradually raised with increased hydrophobicity. For hydrophilic 369 

compounds (log KOW <0), both approaches agreed well with each other within approximately a 370 

factor of 10. For chemicals with log Kow>4 and log KOA >8, the pp-approach generally 371 

predicted Kfish-water on average two times higher than that predicted by sp-approach. But the 372 

deviation did not consistently propagate to the predictions of concentration in fish. Both 373 

approaches agreed reasonably well for hydrophilic (log Kow<0) and highly hydrophobic 374 

compounds (log Kow>7) with the quotient between 0.9-1.1, while the deviation occurred on the 375 

calculation of Kfish-water was up to 35 times. The underlying explanation could be that Kfish-water 376 

has different extent of impact on the determination of BCFs, which is dependent on chemical 377 

hydrophobicity. For instance, Kfish-water was observed to contribute a greater degree to the 378 

bioaccumulative potential for hydrophobic chemicals with a high tendency of bioaccumulation 379 

(Kuo and Di Toro, 2013b). While, partitioning to organic carbon (bioavailable portion) 380 

contributed more to BCF values for super-hydrophobic compounds (Kuo and Di Toro, 2013b). 381 
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3.1.2 Comparison of Kblood-water by sp/pp-approaches 382 

Greater differences were observed for the log Kblood/water calculated by sp-LFERs and pp-LFERs 383 

approaches, indicating increased divergence with higher partition coefficients between blood 384 

and water for compounds with different polarities. 72% of selected substances fell within a 385 

difference of less than a log unit. In the total data set, the largest difference up to 2.5 log units 386 

was found for 1, 2, 3, 4, 5, 6, 7, 8-octachloronaphthalene in the category of nonpolar compounds. 387 

This compound has an extremely high L=12.88, leading to higher partition coefficients between 388 

biological tissue and water than that between octanol and water. 389 

A different trend was observed for the relationship between hydrophobicity and the deviations 390 

of the predictions by sp-LFERs and pp-LFERs models than that for the Kfish/water. For 86% of the 391 

selected substances, the pp-LFERs model estimated higher blood-water partition coefficients 392 

than the sp-LFERs model. Larger discrepancies were observed with increasing hydrophobicity 393 

for all three types of compounds. Especially for nonpolar compounds, the deviation between the 394 

sp-LFERs and pp-LFERs models indicated a positive relationship between the log KOW and a 395 

high correlation coefficient of R2=0.96 was observed (Figure S1-a). A higher deviation resulting 396 

from incorporating pp-LFERs was expected for polar compounds than for nonpolar compounds. 397 

The underlying reason for this unexpected results could be caused by the inclusion of protein in 398 

the pp-approach. The predicted partitioning coefficients of protein have larger deviation (1-2 log 399 

units) than Kstorage lipid-water for nonpolar compounds, which increased with hydrophobicity (Endo 400 

et al., 2012). The absolute values of Ll+Vv terms, describing van der Waals interactions, was 401 

plotted against hydrophobicity (illustrated in Figure S1). The sum of Ll and Vv consistently 402 

increased in all biological systems as in Figure S1. The divergences grew between different 403 

biological compositions and octanol with increased hydrophobicity. Therefore, the greater 404 

deviation probably occurs as a consequence of not properly capturing the behaviour of van der 405 

Waals' forces for chemicals with high values of L. The difference between predicted 406 

concentrations between sp-LFERs and pp-LFERs from the PBTK model is similar to that from 407 
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the one-compartment model, since both models employed several identical empirical 408 

relationships (Arnot and Gobas, 2004). 409 

 410 

Figure 2. Contribution to total partition capacity by different biological tissues with the full 411 

range of KOW: (a) individual contribution to the total Kfish/water; (b) individual contribution to the 412 

total Kblood/water. 413 

3.2 Contribution to the total sorption capacity 414 

In order to explore the importance of neutral lipids, phospholipids (membrane), proteins, serum 415 

albumin (BSA) and water as sorptive matrixes, the contribution of each biological phase 416 

calculated via sp-LFERs and pp-LFERs was plotted as a function of log KOW in Figure 2. The 417 

greatest disparity is the dominant tissue contributing to the total partitioning capacity. For the 418 

one-compartment fish model, the sp-LFERs model only considered neutral lipid, water and 419 

NLOM (a relative sorptive capacity proportional to lipid). Therefore, the contribution of each 420 

biological sorbent to the total partitioning capacity presented a continuous trend the change of 421 

chemical hydrophobicity (illustrated in Figure 2-a). However, the shifting trend was more 422 

complex for the pp-LFERs model, with additional consideration of protein and phospholipid 423 

without directly relating to octanol. It is obvious that the contributions of water and lipid were 424 

consistent for hydrophobic and hydrophilic chemicals for both models, since the water and lipid 425 

are the absolute predominant sorptive matrixes. For the chemical with moderate to high KOW 426 

values (2<log KOW<6), the phospholipid and protein made important contributions, up to 39% 427 

for protein and 61% for phospholipid, respectively. This also explains that the large deviation in 428 

calculated partition coefficients between fish/blood and water for a chemical with moderate 429 

hydrophobicity (Figure 1-c). 430 
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For the PBTK models employing pp-LFERs, the individual contribution was also calculated 431 

between blood and water for the whole range of KOW in Figure 2-b. A similar trend was 432 

observed for predicted blood-water partitioning as the comparison for the Kfish/water, which 433 

continuously changed with the varied KOW values. However, the pp-LFERs model predicted 434 

more dispersed values in the individual biological compartments. The protein and BSA also 435 

contributed to the total blood-water partitioning up to 72% and 41%, respectively. Their 436 

individual contribution did not indicate a consistent shift with the increased log KOW, especially 437 

for protein, whose points were scattered on a wide range of log KOW between 2 and 9. This 438 

reflects the fact that hydrophobicity is not a perfect indicator for absorption to protein. For 439 

example, eicosanoic acid is the most hydrophobic compound in the database with log Kow=9.47. 440 

However, protein contributes 32% to the total blood-water partition coefficients. BSA 441 

contributed most in the moderate range of log KOW=1 ~ 5, based on the currently used chemical 442 

set. Phospholipids also contributed between 10~20% for compounds with Log KOW >1 peaking 443 

at about log KOW=4~5. It is noteworthy that the regression relationship used for calculating 444 

blood-water partition coefficients, was originally derived from compounds with a limited log 445 

KOW range from 1.46 to 4.04. Thus, any compounds outside this range may cause potential 446 

errors and should be used with caution (Bertelsen et al., 1998; Nichols, 2002). This relationship 447 

is still commonly used in PBTK modelling (Hendriks et al., 2005; Han et al., 2007; Stadnicka et 448 

al., 2012). Evaluation of the regression equation to describe tissue/water partitioning is out of 449 

the scope of this study. 450 

From the comparison of the contribution to the total fish/blood-water partition coefficients 451 

above, it also could help to explain how the difference occurs. In the range of log KOW from 2 to 452 

6, protein provides an important contribution to both partition coefficients. Using octanol as 453 

equivalent to lipid could overestimate the contribution of lipid, but the sp-LFER approach could 454 

also underestimate the contribution of protein. As a result, the total partition coefficient 455 

calculated by the sp and pp-approaches could be expected to be different within a reasonable 456 

range, since the underestimation and overestimation could proportionally cancel out with each 457 
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other. The similar result was also observed in comparing the lipid-octanol model and pp-LFERs 458 

model to predicting partition coefficients of tissue-water (Endo et al., 2013).  459 

3.3 Comparison with experimental data 460 

3.3.1 One-compartment model 461 

There are 835 data points from fish species chosen from the experimental database for 110 462 

distinct compounds (Arnot and Gobas, 2006). The chemicals covered the KOW range from -0.15 463 

to 8.67. However, most data points fell in the log KOW range between 3~5 as illustrated in 464 

Figure S3. In order to examine the magnitude of the deviation correlated by the hydrophobicity 465 

between predictions and measurements, the impact of applying pp-LFER equations to the 466 

individual ranges of log KOW and the whole dataset was explored and presented in Table S7. In 467 

general, the pp-LFER model performed slightly better in terms of predicting BCF, with 468 

increased coefficient of determination (R2) and absolute model bias for the whole dataset. The 469 

deviations between the sp and pp-LFERs model predictions, did not show a pronounced KOW 470 

dependency. The pp-LFERs model did not generally improve the coefficient of determination, 471 

for compounds with log KOW <3. The underestimation is most severe for log KOW <1 with an 472 

average 2.9 log units for both approaches. This is because the calculation of Kfish/water is 473 

predominantly determined by water (illustrated in Figure 2). Thus the effect of replacing sp with 474 

pp-LFERs is minimal. Therefore, there is no clear advantage observed for using pp-LFERs 475 

model instead of sp-LFERs for compounds with log KOW < 2. For the middle range of log KOW 476 

from 4 to 5, the BCFs predicted by pp-LFERs were found to better fit observed values 477 

compared the sp-LFERs model. This is due to a better quantification of partitioning behaviour 478 

of polar compounds such as phenols in this range, by adding separate consideration of protein 479 

and phospholipid, which makes signification contribution in such case. 480 

For very hydrophobic compounds (7<log KOW <9), both models predicted the selected BCFs 481 

reasonably well (R2=0.80-0.96). This is because lipids are the main sorbing matrix in this KOW 482 

range. In addition, it has been demonstrated that depuration kinetics are more important for 483 

hydrophobic chemicals with higher bioaccumulation potentials. While, partitioning to dissolved/ 484 
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particulate organic carbon (the bioavailable part) plays an important role for highly hydrophobic 485 

chemicals (Kuo and Di Toro, 2013b). Therefore, improved partition coefficients may not greatly 486 

influence the model performance using the pp-LFERs model in the high log KOW range (7~9). 487 

On the other hand, chemicals with low bioaccumulative potential (log BCF≤ 2) are generally 488 

mainly determined by fish-water partitioning coefficients (Kbw) and thus more pronounced 489 

improvement would be expected (Kuo and Di Toro, 2013b). Consequently, the comparison 490 

should be made with caution for the very hydrophilic and super-hydrophobic compounds, due 491 

the limited data points. 492 

3.3.2 PBTK model 493 

In total, 41 distinct compounds with 355 data points with log KOW from 2.4 to 8.7 for rainbow 494 

trout were selected. Results of statistical analysis are presented in Table S7 and S8. Most 495 

compounds have low polarity, with relative small Aa and Bb values. Greater improvement was 496 

observed when pp-LFERs models were used in the PBTK model compared that in the one-497 

compartment model. This could be attributable to more pp-LFERs equations incorporated in the 498 

model, not only for the blood-water system, but also covering kidney, liver, and fat and water 499 

partitioning composed by varied biological composition. In the one-compartment model, sp-500 

LFERs were only replaced with the partition coefficients between whole body and water. The 501 

KOW-driven sp-LFERs PBTK model tended to underestimate BCFs for 96% of the selected 502 

measurements. One underlying explanation could be that the partitioning behaviour could not be 503 

well characterized by means of octanol-water partitioning. Particularly for highly hydrophobic 504 

nonpolar compounds, the divergence increased with the increasing hydrophobicity as discussed 505 

in Section 3.1.2. 506 

When metabolism was included, the pp-LFER model also performed better in all the statistical 507 

analysis. All deviations fell within a factor of 10. A paired t-test was conducted to indicate 508 

whether there is a statistical difference (p<0.05). All the compounds fell within 1 log unit via 509 

incorporation of pp-LFERs equations. The correlation of determination was improved from 0.67 510 

to 0.80 while the absolute model bias (AMB) decreased by half from 0.68 to 0.34. The largest 511 
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deviation occurred for octachloronaphthalene predicted by the sp-LFERs model, which also had 512 

the largest divergence when comparing the blood-water partition in the whole dataset discussed 513 

previously. This further supports the fact that sp-LFERs underestimated the blood water 514 

partitioning and potentially also partitioning to other biological compartments (kidney, liver and 515 

fat). However, both models tended to underestimate the BCFs for the whole dataset. This could 516 

be due the parameterization uncertainty, mainly from hepatic biotransformation extrapolated 517 

from the whole-body metabolism rate. It has been demonstrated that biotransformation may 518 

have a greater impact on the PBTK model than that in the one-compartment model, which 519 

results from the different structure of both models (Nichols et al., 2007; Stadnicka et al., 2012). 520 

 521 

Figure 3. Comparison between measured log BCF_ob with predicted log BCF using sp/pp-522 

approaches in the multi-compartment PBTK model. The dashed lines represent a factor of 10 523 

between the predicted and measured BCFs. 524 

3.4 Practical implications 525 

pp-LFERs model can potentially provide improved insights about the prediction of potential 526 

bioaccumulation. The impacts of using pp-LFERs were different in the one-compartment fish 527 

model and PBTK fish model. For the one-compartment model, pp-LFERs improved model 528 

performance for chemicals with log KOW 4-5, via better quantifying the protein/phospholipid-529 

water partition coefficients. However, the differences between predictions via sp-LFERs and 530 

pp-LFERs model are relatively small for the whole range of KOW. This is because better 531 
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quantification of individual partitioning processes does not guarantee significant improvement 532 

overall. Besides, elimination kinetics could be the most important parameters in the 533 

determination of BCFs for highly bioaccumulative substances (Kuo and Di Toro, 2013a). As a 534 

consequence, such simplified models are generally incorporated in multimedia fate models and 535 

are used for the chemical screening and risk assessment. The sp-LFERs incorporated in one-536 

compartment fish models is, therefore, good enough for these purposes. 537 

This situation could be different for the PBTK fish model, which offers more detailed 538 

information on organ-specific concentrations and which is potentially more insightful for 539 

understanding potential exposure routes for target fish organs. It is important to understand 540 

specific pathways to target sites and bioaccumulation along food chains, if predators 541 

preferentially consume certain body parts (Ankley et al., 2010; Stadnicka et al., 2012). 542 

Therefore, the pp-LFERs model would clearly benefit from a better description and 543 

characterization of biological composition and water partition coefficients. Although the flawed 544 

regression equations used in this study are limited in terms of their applicable domains, lipid 545 

was still not suggested as a good indicator to predict partition coefficients in this case as 546 

discussed above, particularly for very hydrophobic and polar compounds. In addition, the pp-547 

LFERs model also could help with the extrapolation of partition coefficients in PBTK model to 548 

another fish species, if the biological composition in individual organ/tissues could be 549 

accurately quantified. 550 

3.5 Limitations 551 

In this study, all the values for solute descriptors were based on experiments, which have been 552 

reported in the literature for more than 2000 compounds and freely at 553 

http://www.ufz.de/index.php?en=31698. However, this could hamper its wide application if the 554 

solute descriptor values are not available for target compounds (Stenzel et al., 2013b). For the 555 

purpose of fast chemical screening, predictive methods that only require molecular structure are 556 

desirable. Prediction models, such as ABSOLV, a commercial QSAR model that predicts the 557 

pp-LFER solute descriptors for compounds with SMILES notations (Stenzel et al., 2014), may 558 
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be useful. This works well for chemicals with relatively simple molecular structures, but further 559 

development is needed for H-donor compounds and chemical with complex structures (Geisler 560 

et al., 2015). 561 

Ionization was not taken into account in this study, as pp-LFERs approach for ionic chemicals is 562 

still a subject of ongoing research. No successful applications to environmental and biological 563 

processes have been reported so far (Endo and Goss, 2014a). However, since many complex/ 564 

multifunction chemicals may ionize in biota, there is a strong need for the investigation of ionic 565 

chemicals (Endo and Goss, 2014a; Bittermann et al., 2016). Meanwhile, the development of 566 

one-compartment models for ionic compounds indicated improved performance via 567 

consideration of partitioning processes to phospholipids (Armitage et al., 2013). In our study, 568 

phospholipids also appeared to play an important role in distribution. 569 

3.6 Conclusions 570 

Overall, pp-LFERs models slightly outperformed sp-LFERs models for the whole dataset in a 571 

one-compartment model, especially for compounds in the log Kow range 4~5. Greater 572 

improvement was found when pp-LFERs were incorporated into a multi-compartment PBTK 573 

model. The impact of pp-LFERs incorporation could be further evaluated by the organ-specific 574 

concentrations/bioaccumulative potential. Therefore, for screening purposes conducted by 575 

simplified one-compartment model, the sp-LFERs approach is probably good enough to 576 

quantify the main partition characteristics in most cases. For more detailed study aimed to 577 

understand exposure pathways to target sites, or dietary exposure for predators preferentially 578 

consuming certain organs/tissues, it is suggested the pp-LFERs should be incorporated in the 579 

PBTK model to improve the accuracy of the description of partition processes. 580 
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