48 research outputs found

    Reconciling Apples & Oranges: A Constructivist SoTL Writing Program

    Get PDF
    Faculty new to SoTL, especially when they consider writing for publication, often react by focusing on how different it isā€”apples and orangesā€”from their familiar disciplinary processes and products. Although there are indeed significant differences between individual disciplines and SoTL, appealing to the similarities can demystify SoTL as disciplinary experts reach out of their comfort zones and into areas of research and writing that often make them doubt themselves. We fill a gap in the SoTL literature by describing how to go from data analysis to publication in SoTL. We also report on our descriptive study delving into the complexities of participantsā€™ experiences, helping us come to a greater understanding of how to support this work

    Bakerā€Polito Administration Elevates State Technology Office

    Get PDF
    Tables S5-S12. The seminal fluid peptides identified from each human individual that underwent MS/MS using the MSDaPl program. ST5 A parsimonious list of SFPs inferred from MSDaPl for human 1. ST6 A parsimonious list of SFPs inferred from MSDaPl for human 2. ST7 A parsimonious list of SFPs inferred from MSDaPl for human 3. ST8 A parsimonious list of SFPs inferred from MSDaPl for human 4. ST9 A parsimonious list of SFPs inferred from MSDaPl for human 5. ST10 A parsimonious list of SFPs inferred from MSDaPl for human 6. ST11 A parsimonious list of SFPs inferred from MSDaPl for human 7. ST12 A parsimonious list of SFPs inferred from MSDaPl for human 8. (XLS 744 kb

    Implementation of a Cardiogenic Shock Protocol and Data Review Process is Associated With Improved In-Hospital Survival

    Get PDF
    Background: Despite increasing use of mechanical circulatory support devices (MCS), cardiogenic shock (CS) mortality is persistently high, with worsening outcomes in later stages of CS. Delays in diagnosis and practice variation may contribute to in-hospital mortality. Methods: In June 2018, we devised and implemented a CS protocol at two hospitals from one health system in Portland, OR. The CS protocol was designed to promote early CS recognition, rapid notification of a multi-disciplinary specialty team lead by a heart failure cardiologist, invasive hemodynamic evaluation, and institution of MCS as appropriate. CS was defined by widely accepted clinical and hemodynamic criteria. Patient demographics, disease severity, process metrics, and clinical outcomes were prospectively collected and reviewed monthly by a multi-disciplinary CS task force. M&Ms were conducted routinely to identify improvement opportunities. The task force continually refined data collection, implemented protocol improvements, and educated providers and clinical staff in the emergency department, critical care, intermediate care, and cardiac telemetry units. Education centered on early recognition of CS, protocol for activation, and the time-sensitivity of CS outcomes. Results: From June 1, 2018 to October 1, 2019, identification of CS patients grew from five to 55 patients per month, with 311 total patients identified. Education initially emphasized CS identification and team activation, then expanded to definition of CS stages and hospital-specific protocols. Over 10 months, the CS mortality rate decreased by 30%. Ongoing optimization includes stratifying patients by primary discharge diagnosis, consistently documenting shock stages in the electronic medical record, and refining the transfer process from other hospitals. Conclusions: Implementation of a CS protocol with emphasis on early recognition, hemodynamic assessment, and implementation of MCS is associated with improved survival. Multi-disciplinary education and team engagement in data review are integral to continual process improvement. Character count: 1,818 Clinical Implications: A protocolized, multi-disciplinary approach can improve the outcome of CS

    Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells

    Get PDF
    Historically, our understanding of molecular genetic aspects of human germ cell development has been limited, at least in part due to inaccessibility of early stages of human development to experimentation. However, the derivation of pluripotent stem cells may provide the necessary human genetic system to study germ cell development. In this study, we compared the potential of human induced pluripotent stem cells (iPSCs), derived from adult and fetal somatic cells to form primordial and meiotic germ cells, relative to human embryonic stem cells. We found that āˆ¼5% of human iPSCs differentiated to primordial germ cells (PGCs) following induction with bone morphogenetic proteins. Furthermore, we observed that PGCs expressed green fluorescent protein from a germ cell-specific reporter and were enriched for the expression of endogenous germ cell-specific proteins and mRNAs. In response to the overexpression of intrinsic regulators, we also observed that iPSCs formed meiotic cells with extensive synaptonemal complexes and post-meiotic haploid cells with a similar pattern of ACROSIN staining as observed in human spermatids. These results indicate that human iPSCs derived from reprogramming of adult somatic cells can form germline cells. This system may provide a useful model for molecular genetic studies of human germline formation and pathology and a novel platform for clinical studies and potential therapeutical applications

    NANOS3 function in human germ cell development

    Get PDF
    Human infertility is common and frequently linked to poor germ cell development. Yet, human germ cell development is poorly understood, at least in part due to the inaccessibility of germ cells to study especially during fetal development. Here, we explored the function of a highly conserved family of genes, the NANOS genes, in the differentiation of human germ cells from human embryonic stem cells. We observed that NANOS-1, -2 and -3 mRNAs and proteins were expressed in human gonads. We also noted that NANOS3 was expressed in germ cells throughout spermatogenesis and oogenesis and thus, focused further efforts on this family member. NANOS3 expression was highest in human germ cell nuclei where the protein co-localized with chromosomal DNA during mitosis/meiosis. Reduced expression of NANOS3 (via morpholinos or short hairpin RNA) resulted in a reduction in germ cell numbers and decreased expression of germ cell-intrinsic genes required for the maintenance of pluripotency and meiotic initiation and progression. These data provide the first direct experimental evidence that NANOS3 functions in human germ cell development; indeed, NANOS3 is now one of just two genes that has been directly shown to function in germ cell development across diverse species from flies, worms, frogs and mice to humans [the other is BOULE, a member of the Deleted in Azoospermia (DAZ) gene family]. Findings may contribute to our understanding of the basic biology of human germ cell development and may provide clinical insights regarding infertility

    How do Two Wheel View international bicycling programs impact youth resiliency?

    No full text
    This capstone examines the non-profit Two Wheel View\u27s international bicycling programs in an effort to measure the impact that these programs have on youth resiliency. The capstone defines youth resiliency and discusses the internal and external factors which influence resiliency. It also examines existing literature related to study abroad programs and their impact on youth. Lastly, it surveys participants of Two Wheel View\u27s programs in order to determine if participation in the international bicycling programs have impacted youth resiliency. The findings are discussed and recommendations for building Two Wheel View\u27s programs are given

    Could a Stop-Bill Process Tied to EHR Help Ensure Correct MI-Related Coding?

    No full text

    Reconciling Apples & Oranges: A Constructivist SoTL Writing Program

    Get PDF
    Faculty new to SoTL, especially when they consider writing for publication, often react by focusing on how different it isā€”apples and orangesā€”from their familiar disciplinary processes and products. Although there are indeed significant differences between individual disciplines and SoTL, appealing to the similarities can demystify SoTL as disciplinary experts reach out of their comfort zones and into areas of research and writing that often make them doubt themselves. We fill a gap in the SoTL literature by describing how to go from data analysis to publication in SoTL. We also report on our descriptive study delving into the complexities of participantsā€™ experiences, helping us come to a greater understanding of how to support this work

    Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems

    No full text
    Abstract Background Genomic data from various organisms have been used to study how sexual selection has shaped genetic diversity in reproductive proteins, and in particular, to elucidate how mating systems may have influenced evolution at the molecular and phenotypic levels. However, large-scale proteomic data including protein identifications and abundances are only now entering the field of evolutionary and comparative genomics. Variation in both protein sequence and expression level may play important roles in the evolution of sexual traits and behaviors. Results Here, we broadly analyze the components of seminal fluid from primates with diverse mating systems ranging from monogamous to polygynous, and include genomics, proteomics, phylogenetic and quantitative characters into our framework. Our analyses show that seminal fluid proteins are undergoing rapid evolution and some of these quickly evolving proteins may be influenced by sexual selection. Through evolutionary analyses and protein abundance differences, we identified 84 genes whose evolutionary rates or expression levels were correlated with mating system and other sexual characters. We found that many proteins differ in abundance between monogamous and polygynous primate mating systems. Many of these proteins are enriched in the copulatory plug pathway, which suggests that post-zygotic selective barriers are important regardless of mating system type. Conclusions This work is the first to comprehensively compare seminal fluid proteins between human and non-human primates using high-throughput proteomics. Our findings highlight the impact of mating system variation on seminal fluid protein evolution and abundance
    corecore