10 research outputs found

    The Cerebellum: A Neural System for the Study of Reinforcement Learning

    Get PDF
    In its strictest application, the term “reinforcement learning” refers to a computational approach to learning in which an agent (often a machine) interacts with a mutable environment to maximize reward through trial and error. The approach borrows essentials from several fields, most notably Computer Science, Behavioral Neuroscience, and Psychology. At the most basic level, a neural system capable of mediating reinforcement learning must be able to acquire sensory information about the external environment and internal milieu (either directly or through connectivities with other brain regions), must be able to select a behavior to be executed, and must be capable of providing evaluative feedback about the success of that behavior. Given that Psychology informs us that reinforcers, both positive and negative, are stimuli or consequences that increase the probability that the immediately antecedent behavior will be repeated and that reinforcer strength or viability is modulated by the organism's past experience with the reinforcer, its affect, and even the state of its muscles (e.g., eyes open or closed); it is the case that any neural system that supports reinforcement learning must also be sensitive to these same considerations. Once learning is established, such a neural system must finally be able to maintain continued response expression and prevent response drift. In this report, we examine both historical and recent evidence that the cerebellum satisfies all of these requirements. While we report evidence from a variety of learning paradigms, the majority of our discussion will focus on classical conditioning of the rabbit eye blink response as an ideal model system for the study of reinforcement and reinforcement learning

    Parallel augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats

    Full text link
    The influence of water deprivation on hippocampal long-term potentiation (LTP), theta rhythm, and contextual fear conditioning in rats was examined. In Experiment 1, hippocampal EEG activity and perforant path LTP were assessed in pentobarbital-anesthetized rats. Water deprivation did not affect baseline cell excitability or low-frequency synaptic transmission in the dentate gyrus, but it increased the magnitude of perforant path LTP and elevated the proportion of theta rhythm in the EEG. In Experiment 2, rats were classically conditioned to fear a novel context through the use of aversive footshocks. Water deprivation facilitated the rate of contextual fear conditioning but did not alter the asymptote of learning. Experiment 3 demonstrated that the facilitation of contextual fear conditioning was not due to a change in unconditional shock sensitivity. These results suggest that water deprivation exerts an influence on contextual fear conditioning by modulating hippocampal LTP and theta rhythm and that these processes serve to encode contextual information during learning.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56206/1/marenBN94.pd

    On Aerobic Exercise and Behavioral and Neural Plasticity

    No full text
    Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underlie elevations of mood and prompt the heightened behavioral plasticity commonly observed following adoption of a chronic exercise regimen. In the following paper, we will explore both the psychological and psychobiological literatures relating to exercise effects on brain in both human and non-human animals and will attempt to link plastic changes in these neural structures to modifications in learned behavior and emotional expression. In addition, we will explore the therapeutic potential of exercise given recent reports that aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during normal and pathological aging
    corecore