184 research outputs found
Testing Consumer Rationality using Perfect Graphs and Oriented Discs
Given a consumer data-set, the axioms of revealed preference proffer a binary
test for rational behaviour. A natural (non-binary) measure of the degree of
rationality exhibited by the consumer is the minimum number of data points
whose removal induces a rationalisable data-set.We study the computational
complexity of the resultant consumer rationality problem in this paper. This
problem is, in the worst case, equivalent (in terms of approximation) to the
directed feedback vertex set problem. Our main result is to obtain an exact
threshold on the number of commodities that separates easy cases and hard
cases. Specifically, for two-commodity markets the consumer rationality problem
is polynomial time solvable; we prove this via a reduction to the vertex cover
problem on perfect graphs. For three-commodity markets, however, the problem is
NP-complete; we prove thisusing a reduction from planar 3-SAT that is based
upon oriented-disc drawings
Leading learning: Theorising principals' support for teacher PD in Ontario
This paper describes and theorizes principals' support for teacher professional development ('PD') during a time of strong provincial pressure for an increased focus upon literacy, numeracy, and improvements in standardized test scores in elementary schools in Ontario, Canada. The paper draws upon semi-structured interviews with 12 principals in one school district to reveal tensions between principals' support for professional development associated with these provincial emphases, and advocacy for professional development relevant to the specific needs of their school sites. To explore these competing priorities, the paper draws upon Pierre Bourdieu's concept of the social world as comprising identifiable and contested social 'fields', each containing individuals and groups with particular and competing socially-inscribed dispositions, or 'habitus'. At the same time, the paper uses principals' responses to validate and extend normative understandings of 'leadership habitus'. While provincial pressures are revealed as having a significant impact upon principals' habitus, an argument is made that the capacity to take local context into account needs to be foregrounded more strongly in current normative conceptions of leadership habitus
Arthropod Phylogenetics in Light of Three Novel Millipede (Myriapoda: Diplopoda) Mitochondrial Genomes with Comments on the Appropriateness of Mitochondrial Genome Sequence Data for Inferring Deep Level Relationships
Background
Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda.
Results
The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic.
Conclusions
The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships
Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls.
Determining whether potential causal variants for related diseases are shared can identify overlapping etiologies of multifactorial disorders. Colocalization methods disentangle shared and distinct causal variants. However, existing approaches require independent data sets. Here we extend two colocalization methods to allow for the shared-control design commonly used in comparison of genome-wide association study results across diseases. Our analysis of four autoimmune diseases--type 1 diabetes (T1D), rheumatoid arthritis, celiac disease and multiple sclerosis--identified 90 regions that were associated with at least one disease, 33 (37%) of which were associated with 2 or more disorders. Nevertheless, for 14 of these 33 shared regions, there was evidence that the causal variants differed. We identified new disease associations in 11 regions previously associated with one or more of the other 3 disorders. Four of eight T1D-specific regions contained known type 2 diabetes (T2D) candidate genes (COBL, GLIS3, RNLS and BCAR1), suggesting a shared cellular etiology.MF is funded by the Wellcome Trust (099772). CW and HG are funded by the
Wellcome Trust (089989).
This work was funded by the JDRF (9–2011–253), the Wellcome Trust (091157)
and the National Institute for Health Research
(NIHR) Cambridge Biomedical
Research Centre. The Cambridge Institute for Medical Research (CIMR) is in receipt
of a Wellcome Trust Strategic Award (100140). ImmunoBase.org is supported by Eli
Lilly and Company.
We thank the UK Medical Research Council and
Wellcome Trust for funding the
collection of DNA for the British 1958 Birth Cohort (MRC grant G0000934, WT grant
068545/Z/02). DNA control samples were prepared and provided by S. Ring, R.
Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton.
Biotec Cluster M4, the Fidelity Biosciences Research Initiative, Research Foundation
Flanders, Research Fund KU Leuven, the Belgian Charcot Foundation,
Gemeinntzige Hertie Stiftung, University Zurich, the Danish MS Society, the Danish
Council for Strategic Research, the Academy of
Finland, the Sigrid Juselius
Foundation, Helsinki University, the Italian MS Foundation, Fondazione Cariplo, the
Italian Ministry of University and Research, the Torino Savings Bank Foundation, the
Italian Ministry of Health, the Italian Institute of Experimental Neurology, the MS
Association of Oslo, the Norwegian Research Council, the South–Eastern
Norwegian Health Authorities, the Australian National Health and Medical Research
Council, the Dutch MS Foundation and Kaiser Permanente.
Marina Evangelou is
thanked for motivating the investigation of the
FASLG
association.This is the author accepted manuscript. The final version is available at http://www.nature.com/ng/journal/v47/n7/full/ng.3330.html
The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs
<p>Abstract</p> <p>Background</p> <p>The family Tetranychidae (Chelicerata: Acari) includes ~1200 species, many of which are of agronomic importance. To date, mitochondrial genomes of only two Tetranychidae species have been sequenced, and it has been found that these two mitochondrial genomes are characterized by many unusual features in genome organization and structure such as gene order and nucleotide frequency. The scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). Information on Tetranychidae mitochondrial genomes is quite important for phylogenetic evaluation and population genetics, as well as the molecular evolution of functional genes such as acaricide-resistance genes. In this study, we sequenced the complete mitochondrial genome of <it>Panonychus citri </it>(Family Tetranychidae), a worldwide citrus pest, and provide a comparison to other Acari.</p> <p>Results</p> <p>The mitochondrial genome of <it>P. citri </it>is a typical circular molecule of 13,077 bp, and contains the complete set of 37 genes that are usually found in metazoans. This is the smallest mitochondrial genome within all sequenced Acari and other Chelicerata, primarily due to the significant size reduction of protein coding genes (PCGs), a large rRNA gene, and the A + T-rich region. The mitochondrial gene order for <it>P. citri </it>is the same as those for <it>P. ulmi </it>and <it>Tetranychus urticae</it>, but distinctly different from other Acari by a series of gene translocations and/or inversions. The majority of the <it>P. citri </it>mitochondrial genome has a high A + T content (85.28%), which is also reflected by AT-rich codons being used more frequently, but exhibits a positive GC-skew (0.03). The Acari mitochondrial <it>nad1 </it>exhibits a faster amino acid substitution rate than other genes, and the variation of nucleotide substitution patterns of PCGs is significantly correlated with the G + C content. Most tRNA genes of <it>P. citri </it>are extremely truncated and atypical (44-65, 54.1 ± 4.1 bp), lacking either the T- or D-arm, as found in <it>P. ulmi</it>, <it>T. urticae</it>, and other Acariform mites.</p> <p>Conclusions</p> <p>The <it>P. citri </it>mitochondrial gene order is markedly different from those of other chelicerates, but is conserved within the family Tetranychidae indicating that high rearrangements have occurred after Tetranychidae diverged from other Acari. Comparative analyses suggest that the genome size, gene order, gene content, codon usage, and base composition are strongly variable among Acari mitochondrial genomes. While extremely small and unusual tRNA genes seem to be common for Acariform mites, further experimental evidence is needed.</p
Environmental and Demographic Determinants of Avian Influenza Viruses in Waterfowl across the Contiguous United States
Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic poultry populations. Further study is needed to identify how these drivers might interact with other host-specific infection determinants, such as species phylogeny, immunological status, and behavioral characteristics
The impact of supply chain agility on business performance in a high level customization environment
To improve business performance in rapidly changing environments, supply chain agility can be a crucial requisite to address responsiveness issues, especially in environments with high levels of customization. This paper examines the effect of supply chain agility on customer service, differentiation, and business performance. A survey research methodology was employed using a sample of 156 manufacturing firms that provide high levels of customization. In particular, structural equation modeling (SEM) was employed to evaluate the proposed model. The results suggest that supply chain agility influences customer service and differentiation positively. However, it does not affect business performance directly; instead, better business performance can be achieved and mediated through improved customer service and differentiation. In particular, differentiation through customer service is the most effective way to improve business performance, and supply chain agility can help to achieve high-level customer service. The paper advises managers on details of how to fulfil their business performance ambitions better through suggested key agile supply chain management activities
Vertebrate Vitellogenin Gene Duplication in Relation to the “3R Hypothesis”: Correlation to the Pelagic Egg and the Oceanic Radiation of Teleosts
The spiny ray-finned teleost fishes (Acanthomorpha) are the most successful group of vertebrates in terms of species diversity. Their meteoric radiation and speciation in the oceans during the late Cretaceous and Eocene epoch is unprecedented in vertebrate history, occurring in one third of the time for similar diversity to appear in the birds and mammals. The success of marine teleosts is even more remarkable considering their long freshwater ancestry, since it implies solving major physiological challenges when freely broadcasting their eggs in the hyper-osmotic conditions of seawater. Most extant marine teleosts spawn highly hydrated pelagic eggs, due to differential proteolysis of vitellogenin (Vtg)-derived yolk proteins. The maturational degradation of Vtg involves depolymerization of mainly the lipovitellin heavy chain (LvH) of one form of Vtg to generate a large pool of free amino acids (FAA 150–200 mM). This organic osmolyte pool drives hydration of the ooctye while still protected within the maternal ovary. In the present contribution, we have used Bayesian analysis to examine the evolution of vertebrate Vtg genes in relation to the “3R hypothesis” of whole genome duplication (WGD) and the functional end points of LvH degradation during oocyte maturation. We find that teleost Vtgs have experienced a post-R3 lineage-specific gene duplication to form paralogous clusters that correlate to the pelagic and benthic character of the eggs. Neo-functionalization allowed one paralogue to be proteolyzed to FAA driving hydration of the maturing oocytes, which pre-adapts them to the marine environment and causes them to float. The timing of these events matches the appearance of the Acanthomorpha in the fossil record. We discuss the significance of these adaptations in relation to ancestral physiological features, and propose that the neo-functionalization of duplicated Vtg genes was a key event in the evolution and success of the teleosts in the oceanic environment
- …