25 research outputs found

    Analysis of all-optically tunable functionalities in sub-wavelength periodic structures by the Fourier modal method

    Get PDF
    We propose the nonlinear Fourier Modal Method (FMM) [J. Opt. Soc. Am. B 31, 2371 (2014)] as a convenient and versatile numerical tool for the design and analysis of grating based next generation all-optical devices. Here, we include several numerical examples where the FMM is used to simulate all-optically tunable functionalities in sub-wavelength periodic structures. At first, we numerically investigate a 1-D periodic nonlinear binary grating with amorphous TiO2. We plot the diffraction efficiency in the transmitted orders against the structure depth for normally incident plane wave. Change in diffraction efficiencies for different incident field amplitudes are evident from the plots. We verify the accuracy of our implementation by comparing our results with the results obtained with the nonlinear Split Field-Finite Difference Time Domain (SF-FDTD) method. Next we repeat the same experiment with vertically standing amorphous Titanium dioxide (TiO2) nanowire arrays grown on top of quartz which are periodic in two mutually perpendicular directions and examine the efficiencies in the direct transmitted light for different incident field amplitudes. Our third example includes analysis of a form birefringent linear grating with Kerr medium. With FMM we demonstrate that the birefringence of such a structure can be tuned by all-optical means. As a final example, we design a narrow band Guided Mode Resonance Filter (GMRF). Numerical experiments based on the nonlinear FMM reveal that the spectral tunability of such a filter can be obtained by all-optical means.This work is partially supported by the Academy of Finland (contract 285880)

    Avant-garde femtosecond laser writing

    No full text
    Recently discovered phenomena of quill and non-reciprocal femtosecond laser writing in glasses and crystals are reviewed. Common beliefs that laser writing does not change when reversing beam scan or propagation direction are challenged

    Femtosecond laser printed microoptics in hydrogenated amorphous silicon

    No full text
    Conventional optics (e.g. lenses or mirrors) manipulates the phase via optical path difference by controlling thickness or refractive index of material. Recently, a promising type of optics emerged which exploits geometric phase shift, when a lightwave is transformed by parameter other than optical path difference, e.g. polarization. Here, wavefront is modified by introducing spatially varying anisotropy and is a result of Panchatraman-Berry phase [1]. Theoretically any phase pattern can be achieved solely by means of geometric phase with efficiencies reaching 100% [2]. This allows continuous optical phase shifts and without phase resets, in stark contrast to conventional elements, wherein phase profiles are encoded as discrete optical path variations in refractive index or thickness, limiting performance. The geometric phase optics is a promising alternative for controlling and manipulating light, but it stumbles on the lack of adequate fabrication technology

    Ultrafast laser calligraphy

    No full text
    Control of structural modifications inside transparent materials by varying the direction of pulse front tilt is demonstrated, achieving a calligraphic style of writing. Anisotropic ultrafast laser cavitation in the irradiated region is observed

    Recent advances in ultrafast laser micromachining: from optical materials to living cells

    No full text
    Modification of transparent materials with ultrafast lasers has attracted considerable interest due to a wide range of applications including laser surgery, integrated optics, optical data storage, 3D micro- and nanostructuring [1,2]. Three different types of material modifications can be induced with ultrafast laser irradiation in the bulk of a transparent material, silica glass in particular: an isotropic refractive index change (type 1); a form birefringence associated with self-assembled nanogratings and negative refractive index change (type 2) [3,4]; and a void (type 3). In fused silica the transition from type 1 to type 2 and finally to type 3 modification is observed with an increase of fluence. Recently, a remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction [5]. The phenomenon has been interpreted in terms of anisotropic plasma heating by a tilted front of the ultrashort laser pulse. Moreover a change in structural modification has been demonstrated in glass by controlling the direction of pulse front tilt, achieving a calligraphic style of laser writing which is similar in appearance to that inked with the bygone quill pen [6]. It has also been a common belief that in a homogeneous medium, the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. More recently it has observed that in a non-centrosymmetric medium, modification of the material can be different when light propagates in opposite directions (KaYaSo effect) [7]. Non-reciprocity is produced by magnetic field (Faraday effect) and movement of the medium with respect to the direction of light propagation: parallel (Sagnac effect) or perpendicular (KaYaSo effect). Moreover a new phenomenon of ultrafast light blade, representing itself the first evidence of anisotropic sensitivity of isotropic medium to femtosecond laser radiation has been recently discovered [8]. We anticipate that the synergy of advances in ultrafast laser micromachining with state of the art imaging techniques such as digital holographic microscopy will open new opportunities in laser material processing, laser surgery and optical manipulatio

    New phenomena in ultrafast laser interaction with matter

    No full text
    Modification of transparent materials with ultrafast lasers has attracted considerable interest due to a wide range of applications including laser surgery, integrated optics, optical data storage, 3D micro- and nano-structuring [1]. Three different types of material modifications can be induced with ultrafast laser irradiation in the bulk of a transparent material, silica glass in particular: an isotropic refractive index change (type 1); a form birefringence associated with self-assembled nanogratings and negative refractive index change (type 2) [2, 3]; and a void (type 3). In fused silica the transition from type 1 to type 2 and finally to type 3 modification is observed with an increase of fluence. Recently, a remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction [4]. The phenomenon has been interpreted in terms of anisotropic plasma trapping and heating by a tilted front of the ultrashort laser pulse. Moreover a change in structural modification has been demonstrated in glass by controlling the direction of pulse front tilt, achieving a calligraphic style of laser writing which is similar in appearance to that inked with the bygone quill pen [5]. It has also been a common belief that in a homogeneous medium, the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. More recently we have observed that in a non-centrosymmetric medium, modification of the material can be different when light propagates in opposite directions (KaYaSo effect) [6]. Non-reciprocity is produced by magnetic field (Faraday effect) and movement of the medium with respect to the direction of light propagation: parallel (Sagnac effect) or perpendicular (KaYaSo effect). We anticipate that the observed phenomena will open new opportunities in laser material processing, laser surgery, optical manipulation and data storage

    3D nanoripples, self-assembled form birefringence and ultrafast laser calligraphy in transparent materials

    No full text
    Modification of transparent materials with ultrafast lasers has attracted considerable interest due to a wide range of applications including laser surgery, integrated optics, optical data storage, 3D micro- and nanostructuring [1]. Three different types of material modifications can be induced with ultrafast laser irradiation in the bulk of a transparent material, silica glass in particular: an isotropic refractive index change (type 1); a form birefringence associated with self-assembled nanogratings (3D nanoripples) and negative refractive index change (type 2) [2,3]; and a void (type 3). In fused silica the transition from type 1 to type 2 and finally to type 3 modification is observed with an increase of fluence. Recently, a remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction [4]. The phenomenon has been interpreted in terms of anisotropic plasma heating by a tilted front of the ultrashort laser pulse. Moreover a change in structural modification has been demonstrated in glass by controlling the direction of pulse front tilt, achieving a calligraphic style of laser writing which is similar in appearance to that inked with the bygone quill pen [5]. It has also been a common belief that in a homogeneous medium the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. Moreover a new phenomenon of ultrafast light blade, representing itself the first evidence of anisotropic sensitivity of isotropic medium to femtosecond laser radiation has been recently discovered [6]. We anticipate that the observed phenomena will open new opportunities in laser material processing, laser surgery, optical manipulation and data storage

    Grating theory approach to optics of nanocomposites

    Get PDF
    Nanocomposites, i.e., materials comprising nano-sized entities embedded in a host matrix, can have tailored optical properties with applications in diverse fields such as photovoltaics, bio-sensing, and nonlinear optics. Effective medium approaches such as Maxwell-Garnett and Bruggemann theories, which are conventionally used for modeling the optical properties of nanocomposites, have limitations in terms of the shapes, volume fill fractions, sizes, and types of the nanoentities embedded in the host medium. We demonstrate that grating theory, in particular the Fourier Eigen-mode Method, offers a viable alternative. The proposed technique based on grating theory presents nanocomposites as periodic structures composed of unit-cells containing a large and random collection of nanoentities. This approach allows us to include the effects of the finite wavelength of light and calculate the nanocomposite characteristics regardless of the morphology and volume fill fraction of the nano-inclusions. We demonstrate the performance of our approach by calculating the birefringence of porous silicon, linear absorption spectra of silver nanospheres arranged on a glass substrate, and nonlinear absorption spectra for a layer of silver nanorods embedded in a host polymer material having Kerr-type nonlinearity. The developed approach can also be applied to quasi-periodic structures with deterministic randomness or metasurfaces containing a large collection of elements with random arrangements inside their unit cells.publishedVersionPeer reviewe
    corecore