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ABSTRACT

We propose the nonlinear Fourier Modal Method (FMM) [J. Opt. Soc. Am. B 31, 2371 (2014)] as a convenient
and versatile numerical tool for the design and analysis of grating based next generation all-optical devices. Here,
we include several numerical examples where the FMM is used to simulate all-optically tunable functionalities in
sub-wavelength periodic structures. At first, we numerically investigate a 1-D periodic nonlinear binary grating
with amorphous TiO2. We plot the diffraction efficiency in the transmitted orders against the structure depth for
normally incident plane wave. Change in diffraction efficiencies for different incident field amplitudes are evident
from the plots. We verify the accuracy of our implementation by comparing our results with the results obtained
with the nonlinear Split Field-Finite Difference Time Domain (SF-FDTD) method. Next we repeat the same
experiment with vertically standing amorphous Titanium dioxide (TiO2) nanowire arrays grown on top of quartz
which are periodic in two mutually perpendicular directions and examine the efficiencies in the direct transmitted
light for different incident field amplitudes. Our third example includes analysis of a form birefringent linear
grating with Kerr medium. With FMM we demonstrate that the birefringence of such a structure can be tuned
by all-optical means. As a final example, we design a narrow band Guided Mode Resonance Filter (GMRF).
Numerical experiments based on the nonlinear FMM reveal that the spectral tunability of such a filter can be
obtained by all-optical means.
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1. INTRODUCTION

In all-optical communication networks, optical data is controlled by signal in optical form and this ‘control of
light by light’ may happen due to the interactions of the optical signal with the nonlinear optical materials chosen
to construct components of the communication channel. Third-order optical nonlinearities lead to several inter-
esting physical phenomena such as Optical Kerr effect (OKE) and third-harmonic generation. Nonlinear optical
process which results in an intensity dependent refractive index, is known as the optical Kerr effect. This leads
to several physical processes with practical interests such as four-wave mixing (FWM),1 self-phase modulation
(SPM),2 cross-phase modulation (XPM),3 self-focusing and de-focusing,4 self-trapping of optical beams,5 laser
beam breakup,6 optical phase conjugation,7 optical soliton formation,8 optical bistability and switching,9,10 etc.
Over the past few decades, various device applications of Kerr nonlinearity have appeared, especially in inte-
grated optics (IO).11 Some of these are power-dependent grating and prism couplers,12–14 directional couplers,15

MachZehnder interferometers,16 all-optical switching devices,17,18 couplers, flip-flops and logic gates.15,16

Many of these nonlinear IO devices employ nanostructures with periodically varying refractive-index pro-
files (like a diffraction grating); for example; optically tunable filters, multiplexers and demultiplexers,19 and
distributed-feedback bistable optical devices (DFBS) have been build up.20–22 Apart from IO devices, free-space
diffractive optical elements with Kerr nonlinear materials have been introduced.23 Also, in recent years, there is
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growing research interests in ’Nonlinear metamaterials’ and it is already being predicted that these new class of
metamaterials might be used to construct parts of the future all-optical communication networks.24 However, to
accurately model subwavelength periodic diffraction grating like metamaterials with tailored nonlinear optical
response, we need advanced numerical simulation tools.

When the dimensions of structural features are of the order of the wavelength of light, rigorous diffraction
theory must be used to predict the result both in linear and nonlinear domains. In the linear domain, one may
apply space domain methods such as the finite-difference time-domain method (FDTD)25 or the finite element
method.26 Alternatively, spatial-frequency-domain methods, like the differential method27,28 and the Fourier
modal method (FMM),29,30 can also be applied. Some of the rigorous numerical methods mentioned above
have been extended for analyzing third-order nonlinear optical phenomena. FDTD and SF-FDTD are efficient,
especially if time-dependent phenomena are studied.31–33 Further, intrinsically linear methods in the frequency
domain can also be used to model third-order optical nonlinearities if an iterative approach is taken.34–37

In this paper, we propose the nonlinear FMM37 as a convenient and versatile numerical tool for the design
and analysis of grating based next generation free-space all-optical devices that are based on the mechanisms of
optical Kerr nonlinearity. This paper is structured in the following manner. In section 2, we include the theo-
retical framework of our nonlinear calculations based on FMM. Section 3 is devoted to the numerical examples.
Finally, discussions are made and conclusions are drawn in section 4.

2. THEORETICAL BACKGROUND

In this section, we first describe the optical Kerr effect and then we explain the theoretical framework of the
nonlinear FMM37 briefly.

2.1 Theory of optical Kerr effect (OKE)

It is a well known fact that the refractive index of many optical materials depends on the intensity of the light
used to measure it. When an intense light wave at a frequency ω propagates through an isotropic third-order
nonlinear medium, incoherent light-matter interactions at ω can be conventionally described in terms of the
nonlinear refractive index.38 Particularly, if the nonlinear response is instantaneous, the effective refractive
index can be calculated using the following equation:

n = n0 + n2I0. (1)

Here, n0 and n2 are the linear and the nonlinear refractive indices of the material medium respectively, and I0 is
the incident light intensity. However, Eq. (1) holds only for linearly polarized light input and should be modified
if one is interested in the effects of the Kerr nonlinearity on the polarization state of the incident elliptically
polarized light field. In this case the light wave propagation should be governed by the following constitutive
equation:

Pi(ω) = ϵ0[χ
(1)
ij (ω)Ej + 3χ

(3)
ijkl(ω = ω + ω − ω)EjEkE

∗
l ]. (2)

Here, Pi(ω) and Ei(ω) stand for the component of the electric polarization and electric field, respectively,

‘ijk’ tag axes of the Cartesian laboratory frame, χ
(1)
ij and χ

(3)
ijkl are tensors of the first- and third-order optical

susceptibilities. These tensors are responsible for the linear and nonlinear refraction, respectively. In an linear

isotropic medium, the susceptibility tensor has only diagonal elements, χ
(1)
ij = (n2

0 − 1)δij , where δij is the

Kronecker delta, while for an isotropic Kerr nonlinear medium χ
(3)
ijkl has only two independent components,

χ1122 and χ1221. Hence, the material constitutive Eq. (2) in terms of “Effective” linear susceptibility can be
written as,

Pi(ω) =
∑
j

ϵ0χ
(eff)
ij Ej , (3)

where,

χ
(eff)
ij = [n2

0 − 1 +A|E|2]δij +BRe
{
EiE

∗
j

}
. (4)
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’Re’ denotes the real part and

A = 6χ1122 − 3χ1221,

B = 6χ1221. (5)

Equation (4) indicates that in an isotropic third order nonlinear medium, nonlinearity may result in optical
anisotropy. Also, it shows that the effective susceptibility is dependent on the polarization state of the incident
light.

2.2 Mathematical framework

x

y
(a) (b)
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d1
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Figure 1. (a) Schematic of the crossed grating. The structure is periodic along x with grating period d1 and along y with
d2. (b) nx × ny grids of a single layer along z. We calculate the field values in each cell using FFT.

Schematic of the crossed grating structure is depicted in Fig. 1(a). d1 and d2 are the grating periods along x
and y. z is the light propagation direction i.e. we consider normal incidence of light from the grating side. We
first slice the structure into a number of z-independent layers. Then, Maxwell’s equations are solved separately
in each layer. Lastly, the boundary conditions are used to obtain the final solution. This is best done with the
S-matrix propagation algorithm.39,40 We proceed in a similar fashion but starting with the anisotropic linear
Fourier Modal Method (FMM)41 which is capable in handling light induced anisotropy. Also in our formulation,
the permittivity tensors are field dependent. Our method is an extension of the algorithm introduced by Laine
and Friberg for linear gratings composed of isotropic nonlinear media.34 In FMM, the electromagnetic fields
are expanded into Floquet-Fourier series and medium permittivity (and also permeability) into Fourier series.
Then the resulting Maxwell equations are solved as a matrix eigenvalue problem. If monochromatic plane-wave
illumination is assumed, any field component in any layer (inside the grating) can be expressed as a superposition
of z-invariant modes. The essence of our nonlinear FMM is listed below

1. We solve the eigenvalues and the eigenvectors for the grating modes in each layer starting from the linear
permittivity, and use the S-matrix algorithm39,40 to solve the complex field amplitudes of the modes as
described in Ref.42

2. We solve the electric-field components using the Fast-Fourier Transform (FFT) algorithm in a 3D grid of
nx × ny × nz points. nx × ny grid is depicted in Fig. 1(b). nz is the number of thin layers along z.

3. Using the solved field components, we calculate the effective linear susceptibility from Eq. (4).

4. We return to the eigenvalue problem, but now using the effective material parameters calculated from the
previous step.
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The above described iterative process is continued until we achieve convergence of the results. However, we must
note that the change in the field values in two subsequent steps must not be too large otherwise, we will not
achieve convergence. Also, we need to use sufficient number of Fourier coefficients to avoid Gibb’s phenomenon.

Next, we proceed to reduce the computing time as well as the computing resources needed for the numerical
method described above. The detailed mathematical derivations are described in Ref.37 Structural symmetries
can be used to largely reduce the computation time in FMM because they allow a re-formulation of the eigenvalue
problem into a more compact form.43–46 We demonstrate that for structures possessing C2v symmetry we can
reduce the computational efforts up to 1/8th and with TE or TM polarized light up to 1/64th compared to the
most general case.37

3. NUMERICAL RESULTS

In this section, we include four different numerical examples. In the first example, we design a binary diffraction
grating structure with Kerr nonlinear material where the diffraction efficiency can be fine tuned by the intensity
of the incident light. Second example includes similar numerical experiment with ALD grown TiO2 nanowires. In
our third example, we investigate a form birefringent wave plate with Kerr nonlinear medium. For a sufficiently
intense light field, the degree of birefringence of such a structure depends on the intensity of the incoming field.
Finally, we design a narrow band guided mode resonance transmission filter (GMRF). We show that the spectral
response function of the filter can be tuned by varying the incident field intensity.

3.1 TiO2 binary grating

As a first example, we simulate a 1-D periodic binary grating with amorphous TiO2. The substrate material
is assumed to be SiO2 with ns=1.46, the linear refractive index of the pillar material (amorphous TiO2) is
ng=2, the nonlinear susceptibility of TiO2 is taken to be χ(3)=2.1×10−20 m2/V2), the vacuum wavelength of
the incoming wave λ= 633 nm, the grating period d=2.5×λ and the fill factor f=0.5. In Fig. 2(a)-(b), we plot
the diffraction efficiencies against the height (in scale of λ) of the pillars assuming that only the pillar material
(TiO2) is nonlinear and ignore the nonlinear coefficients of SiO2 and air. This assumption is reasonable as TiO2

has 2-3 orders of magnitude larger third-order nonlinear susceptibility. Clearly from the results, the difference
between the linear and the nonlinear efficiency curves (I= 0.5 MW/µm2) increase with increase of the grating
depth h. From the plots we see that our FMM implementation is in excellent agreement with the SF-FDTD
implementation of gratings with Kerr nonlinear media.32

3.2 Arrays of TiO2 naowires

Here, we consider an array of amorphous TiO2 (linear refractive index ng=2 and third-order susceptibility
χ(3)=1.47×10−20 m2/V2) nanowires. The nanowires are cylindrical shaped and the height/diameter aspect ratio
of the wires h/D is ∼ 10. The geometry of the structure is depicted in Fig. 3(a). The nanowires are grown on
top of quartz by the atomic layer deposition (ALD). In our numerical experiment, we assume a plane wave of
wavelength λ =532 nm to be normally incident on the structure from air. In Fig. 3(b), we plot the diffraction
efficiency against the height (in scale of λ) of the wires. The black solid curve is the linear case where the electric
field intensity of the input plane wave is not sufficient to generate Kerr nonlinearity inside the wires. The red
dotted curve is for the incident electric field intensity I = 50 GW/cm2. From the plots we observe that though
the effect of Kerr nonlinearity is rather small, with growing thickness of the nanowires, the difference between
the linear and the nonlinear efficiency curves becomes more and more prominent. Hence, by employing very long
wires, it is possible to tune the diffraction efficiency by all-optical means.

3.3 Form birefringent wave plate

Dielectric subwavelength diffraction gratings with grating period Λ ≤ λ/10 yield strong birefringence in direct
transmission due to their structural anisotropy. This type of birefringence is termed as ‘Form birefringence’.47

Form birefringent gratings have wide commercial applications especially in constructing devices such as wave
plates, retarders, polarizing beam splitters etc.48–51 Though birefringent gratings with linear materials have
been studied extensively in the past, form birefringence of gratings with Kerr media came to research focus
only very recently.52 Here, we design a subwavelength form birefringent grating structure with 1-D periodicity.
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Figure 2. Diffraction efficiency curves of (a) direct transmitted order and (b) transmitted first-orders. Red circles are
SF-FDTD results and it is clear from the plots that these red circles fit very well with the results obtained by the nonlinear
FMM (solid black lines). Blue solid line is the linear curve.

The wavelength of the incident light is λ0 = 532 nm, grating fill factor=0.5, and Λ = 50 nm. The grating
material is chosen to be SiO2 with linear refractive index ng = 1.47, the grooves are assumed to be filled with
DDMEBT polymer with χ(3)=1.19×10−17 m2/V2, negligible two-photon absorption (TPA) and linear refractive
index ns = 1.88. The substrate is SiO2. Plane wave is assumed to be incident normally from air. In Fig. 4(a)
we plot the birefringence viz. the phase difference between x and y components (Φtx00 and Φty00) of the direct
transmitted light both for the linear and the nonlinear (I=10 GW/cm2) cases. From the plots it is evident that
by choosing the incident field intensity, the grating material, the surrounding medium and the grating dimensions
carefully, it is possible to achieve wave retardation ∼ 10◦s solely by optical means. In Fig. 4(b), the nonlinear
form birefringence (the difference between the linear and the nonlinear cases) is plotted as a function of the
grating depth h for 4 different polarization states of the incident electric field. It is evident from the plots that
the strongest effect is observed with an incident field that is linearly polarized in the y direction, and the weakest
with the x polarized field.

3.4 Guided Mode Resonance Filter

Waveguide grating in its most basic configuration includes a relief grating layer, a waveguide layer and a substrate
layer. Depending on the structural dimensions and the mounting conditions, strong resonance phenomenon can
be observed. At resonance, a guided mode is excited by the incident wave. This guided mode interferes with the
direct transmitted/reflected wave destructively and as a result 100 percent efficiency can be achieved in direct
reflection/transmission. Also, at resonance there is large field confinement inside the structure. This enhances
the effective nonlinearity inside the structure. Here we design a Si3N4 (Silicon Nitride) GMRF on top of quartz
which acts as a narrow-band reflector. The structure is assumed to be periodic in x direction with grating period
d =930 nm, fill factor is assumed to be f = 0.5. We assume plane wave propagation along z from the grating
side as depicted in Fig. 5(a). The nonlinear susceptibility is taken to be χ(3)=3×10−20 m2/V2, TPA of Si3N4 is
assumed to be negligible and A = 2B is used in Equation (4). Thickness of the grating layer is δ = 20 nm and
that of the waveguide layer is t = 380 nm. From Fig. 5(b) we observe shift of the reflection peak towards the
longer wavelengths as the intensity of the incident plane wave increases. Hence, from 100 percent transmission
to 100 percent reflection can be achieved with this kind of structure keeping the wavelength fixed but varying
the incident field intensity. This kind of structure may be employed to construct all-optically tunable filters.
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Figure 3. (a) Schematic of the nanowires. The structure is periodic along both x and y directions with periodicity
d1 = d2 = 0.9 × λ. Diameter of the wires = 0.6 × d1. The wires are grown by ALD on top of quartz substrate. (b)
Efficiency in direct transmission. The black solid curve is plotted by assuming the incident field intensity extremely low
i.e. the linear case. The red dotted curve is plotted assuming the incident field intensity I=5×1014 W/m2. Clearly from
the plots, the difference between the linear and the nonlinear curves increase with the growing thickness of the wires.
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Figure 4. (a) Birefringence viz. the phase difference (Φtx00 − Φty00) between the x and y components of the direct
transmitted field. 45◦ linearly polarized field is assumed to be normally incident on the structure from air. (b) the
nonlinear birefringence viz. the difference between the linear and the nonlinear results for different polarization states of
the incident electric field. The strongest effect is observed with y polarized field while the weakest effect with x polarized
field.

4. DISCUSSIONS AND CONCLUSIONS

Devices whose properties can be tuned by all-optical means are already being investigated thoroughly for suitable
commercial use. Very recently, a new class of electromagnetic metadevices known as tunable metadevices,
where the device properties can be tuned by all-optical means have emerged. It is already being predicted
that in near future, these new class of metamaterials will find significant applications in relation to optical
communication. Hence, new fabrication and experimental schemes need to be assisted by advanced numerical
simulation techniques for some known standard nonlinear processes where we must use the full-wave numerical
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Figure 5. (a) Geometry of the GMRF. Thickness of the grating layer δ = 20 nm, and thickness of the waveguide layer
t = 380 nm. (b) Efficiency of 0th reflected order. With growing intensity of the incident field, we observe shift of the
reflectance curve towards longer wavelengths.

simulation approach starting from the Maxwell’s equations.
Our nonlinear FMM is a good candidate for designing all-optically tunable functionalities in the context of

periodic nonlinear metamaterials. However, there are some limitations. For materials with high TPA coefficients,
this method can not be used because besides nonlinear refraction we must also take into account nonlinear
absorption. Also, in our numerical implementation only monochromatic plane wave incidence is assumed. We
aim to overcome these issues in our future works so that the method can also be applied seamlessly in the context
of ultrafast nonlinear optics and also with materials with high TPA.
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