9 research outputs found

    Prediction of arenavirus fusion peptides on the basis of computer analysis of envelope protein sequences

    Get PDF
    AbstractTheoretical search and selection criteria for putative fusion peptides of enveloped viruses are proposed. Arena virus fusion peptides are predicted on the basis of computer-assisted analysis of amino acid sequences of arenavirus envelope proteins and elements of their secondary and tertiary structure. Accordingly, two regions of GP2 surface protein from 5 viruses of Arenaviridae family have been detected with properties typical of fusion peptides of other enveloped viruses. One region, named peptide IV, located at the N-terminus of the GP2 protein, is followed by the other region or peptide V, more likely candidate for the arenavirus fusion peptide

    Exploitation of a newly-identified entry pathway into the malaria parasite-infected erythrocyte to inhibit parasite egress

    Get PDF
    Abstract While many parasites develop within host cells to avoid antibody responses and to utilize host cytoplasmic resources, elaborate egress processes have evolved to minimize the time between escaping and invading the next cell. In human erythrocytes, malaria parasites perforate their enclosing erythrocyte membrane shortly before egress. Here, we show that these pores clearly function as an entry pathway into infected erythrocytes for compounds that inhibit parasite egress. The natural glycosaminoglycan heparin surprisingly inhibited malaria parasite egress, trapping merozoites within infected erythrocytes. Labeled heparin neither bound to nor translocated through the intact erythrocyte membrane during parasite development, but fluxed into erythrocytes at the last minute of the parasite lifecycle. This short encounter was sufficient to significantly inhibit parasite egress and dispersion. Heparin blocks egress by interacting with both the surface of intra-erythrocytic merozoites and the inner aspect of erythrocyte membranes, preventing the rupture of infected erythrocytes but not parasitophorous vacuoles, and independently interfering with merozoite disaggregation. Since this action of heparin recapitulates that of neutralizing antibodies, membrane perforation presents a brief opportunity for a new strategy to inhibit parasite egress and replication

    Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes

    Get PDF
    Egress of malaria parasites from the host cell requires the concerted rupture of its enveloping membranes. Hence, we investigated the role of the plasmodial perforin-like protein PPLP2 in the egress of Plasmodium falciparum from erythrocytes. PPLP2 is expressed in blood stage schizonts and mature gametocytes. The protein localizes in vesicular structures, which in activated gametocytes discharge PPLP2 in a calcium-dependent manner. PPLP2 comprises a MACPF domain and recombinant PPLP2 has haemolytic activities towards erythrocytes. PPLP2-deficient [PPLP2(−)] merozoites show normal egress dynamics during the erythrocytic replication cycle, but activated PPLP2(−) gametocytes were unable to leave erythrocytes and stayed trapped within these cells. While the parasitophorous vacuole membrane ruptured normally, the activated PPLP2(−) gametocytes were unable to permeabilize the erythrocyte membrane and to release the erythrocyte cytoplasm. In consequence, transmission of PPLP2(−) parasites to the Anopheles vector was reduced. Pore-forming equinatoxin II rescued both PPLP2(−) gametocyte exflagellation and parasite transmission. The pore sealant Tetronic 90R4, on the other hand, caused trapping of activated wild-type gametocytes within the enveloping erythrocytes, thus mimicking the PPLP2(−) loss-of-function phenotype. We propose that the haemolytic activity of PPLP2 is essential for gametocyte egress due to permeabilization of the erythrocyte membrane and depletion of the erythrocyte cytoplasm

    Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion

    No full text
    Proteases of the malaria parasite Plasmodium falciparum have long been investigated as drug targets. The P. falciparum genome encodes 10 aspartic proteases called plasmepsins, which are involved in diverse cellular processes. Most have been studied extensively but the functions of plasmepsins IX and X (PMIX and PMX) were unknown. Here we show that PMIX is essential for erythrocyte invasion, acting on rhoptry secretory organelle biogenesis. In contrast, PMX is essential for both egress and invasion, controlling maturation of the subtilisin-like serine protease SUB1 in exoneme secretory vesicles. We have identified compounds with potent antimalarial activity targeting PMX, including a compound known to have oral efficacy in a mouse model of malaria
    corecore