92 research outputs found

    Double Yields and Negative Emissions? Resource, Climate and Cost Efficiencies in Biofuels With Carbon Capture, Storage and Utilization

    Get PDF
    As fossil-reliant industries turn to sustainable biomass for energy and material supply, the competition for biogenic carbon is expected to intensify. Using process level carbon and energy balance models, this paper shows how the capture of residual CO2 in conjunction with either permanent storage (CCS) or biofuel production (CCU) benefits fourteen largely residue-based biofuel production pathways. With a few noteworthy exceptions, most pathways have low carbon utilization efficiencies (30-40%) without CCS/U. CCS can double these numbers and deliver negative emission biofuels with GHG footprints below -50 g CO2 eq./MJ for several pathways. Compared to CCS with no revenue from CO2 sequestration, CCU can offer the same efficiency gains at roughly two-third the biofuel production cost (e.g., 99 EUR/MWh vs. 162 EUR/MWh) but the GHG reduction relative to fossil fuels is significantly smaller (18 g CO2 eq./MJ vs. -99 g CO2 eq./MJ). From a combined carbon, cost and climate perspective, although commercial pathways deliver the cheapest biofuels, it is the emerging pathways that provide large-scale carbon-efficient GHG reductions. There is thus some tension between alternatives that are societally best and those that are economically most interesting for investors. Biofuel pathways vent CO2 in both concentrated and dilute streams Capturing both provides the best environomic outcomes. Existing pathways that can deliver low-cost GHG reductions but generate relatively small quantities of CO2 are unlikely to be able to finance the transport infrastructure required for transformative bio-CCS deployment. CCS and CCU are accordingly important tools for simultaneously reducing biogenic carbon wastage and GHG emissions, but to unlock their full benefits in a cost-effective manner, emerging biofuel technology based on the gasification and hydrotreatment of forest residues need to be commercially deployed imminently

    Greater early bactericidal activity at higher rifampicin doses revealed by modeling and clinical trial simulations

    Get PDF
    This work was supported by the Swedish Research Council (grant 521-2011-3442 to R. J. S. and U. S. H. S.), the Innovative Medicines Initiative Joint Undertaking (award 115337, with contribution from the European Union’s Seventh Framework Programme [FP7/2007–2013] and the European Federation of Pharmaceutical Industries and Associations [in-kind contribution]), the European and Developing Countries Clinical Trials Partnership (awards IP.2007.32011.011, IP.2007.32011.012, and IP.2007.32011.013), the Netherlands-African Partnership for Capacity Development and Clinical Interventions Against Poverty-Related Diseases, and the Bill and Melinda Gates Foundation.Background The currently recommended rifampicin dose (10 mg/kg) for treating tuberculosis is suboptimal. The PanACEA HIGHRIF1 trial evaluated the pharmacokinetics and early bactericidal activity of rifampicin doses of up to 40 mg/kg. Conventional statistical analyses revealed no significant exposure-response relationship. Our objectives were to explore the exposure-response relationship for high-dose rifampicin by using pharmacokinetic-pharmacodynamic modeling and to predict the early bactericidal activity of 50 mg/kg rifampicin. Methods Data included time to Mycobacterium tuberculosis positivity of liquid cultures of sputum specimens from 83 patients with tuberculosis who were treated with 10 mg/kg rifampicin (n = 8; reference arm) or 20, 25, 30, 35, or 40 mg/kg rifampicin (n = 15/arm) for 7 days. We used a semimechanistic time-to-event approach to model the time-to-positivity data. Rifampicin exposure and baseline time to culture positivity were explored as covariates. Results The baseline time to culture positivity was a significant covariate on the predicted initial bacterial load, and rifampicin exposure was a significant covariate on the bacterial kill rate in sputum resulting in increased early bactericidal activity. The 90% prediction interval for the predicted median day 7 increase in time to positivity for 50 mg/kg rifampicin was 7.25–10.3 days. Conclusions A significant exposure-response relationship was found between rifampicin exposure and early bactericidal activity. Clinical trial simulations showed greater early bactericidal activity for 50 mg/kg rifampicin.PostprintPeer reviewe

    Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis

    Get PDF
    Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.</p

    The potential for treatment shortening with higher rifampicin doses : relating drug exposure to treatment response in patients with pulmonary tuberculosis

    Get PDF
    This work was supported by the European and Developing Countries Clinical Trials partnership (grants IP.2007.32011.011, IP.2007.32011.012, and IP.2007.32011.013) and the German Ministry for Education and Research (grant 01KA0901). The original study conducted within the PanACEA consortium.Background: Tuberculosis remains a huge public health problem and the prolonged treatment duration obstructs effective tuberculosis control. Higher rifampicin doses have been associated with better bactericidal activity, but optimal dosing is uncertain. This analysis aimed to characterize the relationship between rifampicin plasma exposure and treatment response over 6 months in a recent study investigating the potential for treatment shortening with high-dose rifampicin. Methods: Data were analyzed from 336 patients with pulmonary tuberculosis (97 with pharmacokinetic data) treated with rifampicin doses of 10, 20, or 35 mg/kg. The response measure was time to stable sputum culture conversion (TSCC). We derived individual exposure metrics with a previously developed population pharmacokinetic model of rifampicin. TSCC was modeled using a parametric time-to-event approach, and a sequential exposure-response analysis was performed. Results: Higher rifampicin exposures increased the probability of early culture conversion. No maximal limit of the effect was detected within the observed range. The expected proportion of patients with stable culture conversion on liquid medium at week 8 was predicted to increase from 39% (95% confidence interval, 37%-41%) to 55% (49%-61%), with the rifampicin area under the curve increasing from 20 to 175 mg/L·h (representative for 10 and 35 mg/kg, respectively). Other predictors of TSCC were baseline bacterial load, proportion of culture results unavailable, and substitution of ethambutol for either moxifloxacin or SQ109. Conclusions: Increasing rifampicin exposure shortened TSCC, and the effect did not plateau, indicating that doses >35 mg/kg could be yet more effective. Optimizing rifampicin dosage while preventing toxicity is a clinical priority.Publisher PDFPeer reviewe

    Optimizing Dosing and Fixed-Dose Combinations of Rifampicin, Isoniazid, and Pyrazinamide in Pediatric Patients With Tuberculosis: A Prospective Population Pharmacokinetic Study

    Get PDF
    BackgroundIn 2010, the World Health Organization (WHO) revised dosing guidelines for treatment of childhood tuberculosis. Our aim was to investigate first-line antituberculosis drug exposures under these guidelines, explore dose optimization using the current dispersible fixed-dose combination (FDC) tablet of rifampicin/isoniazid/pyrazinamide; 75/50/150 mg, and suggest a new FDC with revised weight bands.MethodsChildren with drug-susceptible tuberculosis in Malawi and South Africa underwent pharmacokinetic sampling while receiving first-line tuberculosis drugs as single formulations according the 2010 WHO recommended doses. Nonlinear mixed-effects modeling and simulation was used to design the optimal FDC and weight-band dosing strategy for achieving the pharmacokinetic targets based on literature-derived adult AUC0-24h for rifampicin (38.7-72.9), isoniazid (11.6-26.3), and pyrazinamide (233-429 mg ∙ h/L).ResultsIn total, 180 children (42% female; 13.9% living with human immunodeficiency virus [HIV]; median [range] age 1.9 [0.22-12] years; weight 10.7 [3.20-28.8] kg) were administered 1, 2, 3, or 4 FDC tablets (rifampicin/isoniazid/pyrazinamide 75/50/150 mg) daily for 4-8, 8-12, 12-16, and 16-25 kg weight bands, respectively. Rifampicin exposure (for weight and age) was up to 50% lower than in adults. Increasing the tablet number resulted in adequate rifampicin but relatively high isoniazid and pyrazinamide exposures. Administering 1, 2, 3, or 4 optimized FDC tablets (rifampicin/isoniazid/pyrazinamide 120/35/130 mg) to children ConclusionsCurrent pediatric FDC doses resulted in low rifampicin exposures. Optimal dosing of all drugs cannot be achieved with the current FDCs. We propose a new FDC formulation and revised weight bands

    High-Dose Oral and Intravenous Rifampicin for the Treatment of Tuberculous Meningitis in Predominantly Human Immunodeficiency Virus (HIV)-Positive Ugandan Adults: A Phase II Open-Label Randomized Controlled Trial.

    Get PDF
    BACKGROUND: High-dose rifampicin may improve outcomes of tuberculous meningitis (TBM). Little safety or pharmacokinetic (PK) data exist on high-dose rifampicin in human immunodeficiency virus (HIV) coinfection, and no cerebrospinal fluid (CSF) PK data exist from Africa. We hypothesized that high-dose rifampicin would increase serum and CSF concentrations without excess toxicity. METHODS: In this phase II open-label trial, Ugandan adults with suspected TBM were randomized to standard-of-care control (PO-10, rifampicin 10 mg/kg/day), intravenous rifampicin (IV-20, 20 mg/kg/day), or high-dose oral rifampicin (PO-35, 35 mg/kg/day). We performed PK sampling on days 2 and 14. The primary outcomes were total exposure (AUC0-24), maximum concentration (Cmax), CSF concentration, and grade 3-5 adverse events. RESULTS: We enrolled 61 adults, 92% were living with HIV, median CD4 count was 50 cells/µL (interquartile range [IQR] 46-56). On day 2, geometric mean plasma AUC0-24hr was 42.9·h mg/L with standard-of-care 10 mg/kg dosing, 249·h mg/L for IV-20 and 327·h mg/L for PO-35 (P < .001). In CSF, standard of care achieved undetectable rifampicin concentration in 56% of participants and geometric mean AUC0-24hr 0.27 mg/L, compared with 1.74 mg/L (95% confidence interval [CI] 1.2-2.5) for IV-20 and 2.17 mg/L (1.6-2.9) for PO-35 regimens (P < .001). Achieving CSF concentrations above rifampicin minimal inhibitory concentration (MIC) occurred in 11% (2/18) of standard-of-care, 93% (14/15) of IV-20, and 95% (18/19) of PO-35 participants. Higher serum and CSF levels were sustained at day 14. Adverse events did not differ by dose (P = .34). CONCLUSIONS: Current international guidelines result in sub-therapeutic CSF rifampicin concentration for 89% of Ugandan TBM patients. High-dose intravenous and oral rifampicin were safe and respectively resulted in exposures ~6- and ~8-fold higher than standard of care, and CSF levels above the MIC
    • …
    corecore