42 research outputs found

    Selection for predation, not female fecundity, explains sexual size dimorphism in the orchid mantises

    Get PDF
    Here we reconstruct the evolutionary shift towards floral simulation in orchid mantises and suggest female predatory selection as the likely driving force behind the development of extreme sexual size dimorphism. Through analysis of body size data and phylogenetic modelling of trait evolution, we recovered an ancestral shift towards sexual dimorphisms in both size and appearance in a lineage of flower-associated praying mantises. Sedentary female flower mantises dramatically increased in size prior to a transition from camouflaged, ambush predation to a floral simulation strategy, gaining access to, and visually attracting, a novel resource: large pollinating insects. Male flower mantises, however, remained small and mobile to facilitate mate-finding and reproductive success, consistent with ancestral male life strategy. Although moderate sexual size dimorphisms are common in many arthropod lineages, the predominant explanation is female size increase for increased fecundity. However, sex-dependent selective pressures acting outside of female fecundity have been suggested as mechanisms behind niche dimorphisms. Our hypothesised role of predatory selection acting on females to generate both extreme sexual size dimorphism coupled with niche dimorphism is novel among arthropods

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Response to “An exceptionally preserved 110 million years old praying mantis provides new insights into the predatory behaviour of early mantodeans”

    No full text
    Hörnig, Haug & Haug (2017) published a description of a new specimen of Santanmantis axelrodi MB.I.2068, an extinct species of praying mantis from the Crato Formation of Brazil. According to Hörnig, Haug & Haug (2017), the discovery of this new specimen brought with it implications for praying mantis character evolution and predatory behavior; it is with these lines of reasoning that we find fault. More specifically, we point to four flawed assumptions in their study that led to their unsubstantiated conclusion that S. axelrodi employed their mesothoracic legs in prey capture

    A survey of the praying mantises of Rwanda, including new records (Insecta, Mantodea)

    No full text
    Tedrow, Riley, Nathan, Kabanguka, Richard, Nasasira, Svenson, Gavin J. (2015): A survey of the praying mantises of Rwanda, including new records (Insecta, Mantodea). Zootaxa 4027 (1): 67-100, DOI: http://dx.doi.org/10.11646/zootaxa.4027.1.

    Supplementary Figure S2 from A Cretaceous-aged Palaeotropical dispersal established an endemic lineage of Caribbean praying mantises

    No full text
    Recent phylogenetic advances have uncovered remarkable biogeographic histories that have challenged traditional concepts of dispersal, vicariance and diversification in the Greater Antilles. Much of this focus has centred on vertebrate lineages despite the high diversity and endemism of terrestrial arthropods, which account for 2.5 times the generic endemism of all Antillean plants and non-marine vertebrates combined. In this study, we focus on three Antillean endemic praying mantis genera, <i>Callimantis</i>, <i>Epaphrodita</i> and <i>Gonatista</i>, to determine their phylogenetic placement and geographical origins. Each genus is enigmatic in their relation to other praying mantises due to their morphological affinities with both Neotropical and Old World groups. We recovered the three genera as a monophyletic lineage among Old World groups, which was supported by molecular and morphological evidence. With a divergence at approximately 107 Ma, the lineage originated during the break-up of Gondwana. Ancestral range reconstruction indicates the lineage dispersed from an African + Indomalayan range to the Greater Antilles, with a subsequent extinction in the Old World. The profound ecomorphic convergence with non-Caribbean groups obscured recognition of natural relationships within the same geographical distribution. To the best of our knowledge, the lineage is one of the oldest endemic animal groups in the Greater Antilles and their morphological diversity and restricted distribution mark them as a critical taxon to conserve

    The evolution of startle displays : a case study in praying mantises

    No full text
    Anti-predator defences are typically regarded as relatively static signals that conceal prey or advertise their unprofitability. However, startle displays are complex performances that deter or confuse predators and can include a spectacular array of movements, colours and sounds. Yet, we do not fully understand the mechanisms by which they function, their evolutionary correlates, or the conditions under which they are performed and evolve. Here, we present, to our knowledge, the first phylogenetically controlled comparative analyses of startle displays including behavioural data, using praying mantises as a model system. We included 58 species that provide a good representation of mantis diversity and estimated the strength of phylogenetic signal in the presence and complexity of displays. We also tested hypotheses on potential evolutionary correlates, including primary defences and body size. We found that startle displays and morphological traits were phylogenetically conserved, whereas behavioural traits were highly labile. Surprisingly, body size was not correlated with display presence or complexity in phylogenetically controlled analyses. Species-rich clades were more likely to exhibit displays, suggesting that startle displays were probably involved in lineage diversification. We suggest that to further elucidate the conditions under which startle displays evolve, future work should include quantitative descriptions of multiple display components, habitat type, and predator communities. Understanding the evolution of startle displays is critical to our overall understanding of the theory behind predator–prey dynamics

    Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence

    No full text
    International audienceUnderstanding the origin and diversification of organisms requires a good phylogenetic estimate of their age and diversification rates. This estimate can be difficult to obtain when samples are limited and fossil records are disputed, as in Dictyoptera. To choose among competing hypotheses of origin for dictyopteran suborders, we root a phylogenetic analysis (~800 taxa, 10 kbp) within a large selection of outgroups and calibrate datings with fossils attributed to lineages with clear synapomorphies. We find the following topology: (mantises, (other cockroaches, (Cryptocercidae, termites)). Our datings suggest that crown-Dictyop-tera—and stem-mantises—would date back to the Late Carboniferous (~ 300 Mya), a result compatible with the oldest putative fossil of stem-dictyoptera. Crown-mantises, however, would be much more recent (~ 200 Mya; Triassic/Jurassic boundary). This pattern (i.e., old origin and more recent diversification) suggests a scenario of replacement in carnivory among polyneopterous insects. The most recent common ancestor of (cockroaches + termites) would date back to the Permian (~275 Mya), which contradicts the hypothesis of a Devonian origin of cockroaches. Stem-termites would date back to the Triassic/Jurassic boundary, which refutes a Triassic origin. We suggest directions in extant and extinct species sampling to sharpen this chronological framework and dictyopteran evolutionary studies

    Morphological character descriptions

    No full text
    Description of morphology characters used in phylogenetic analysis. Character numbers correspond to the order of appearance in the data matrix. Characters taken from Svenson et al. (2015)

    Data matrix

    No full text
    Combined molecular and morphology matrix used to generate phylogenetic trees. A data partition block is included at the end of the data matrix
    corecore