76 research outputs found

    Iridium Oxide Microelectrode Arrays for In Vitro Stimulation of Individual Rat Neurons from Dissociated Cultures

    Get PDF
    We present the first in vitro extracellular stimulation of individual neurons from dissociated cultures with iridium oxide (IrOx) electrodes. Microelectrode arrays with sputtered IrOx films (SIROF) were developed for electrophysiological investigations with electrogenic cells. The microelectrodes were characterized with scanning electron and atomic force microscopy, revealing rough and porous electrodes with enlarged surface areas. As shown by cyclic voltammetry and electrochemical impedance spectroscopy, the large surface area in combination with the good electrochemical properties of SIROF resulted in high charge storage capacity and low electrode impedance. Thus, we could transfer the good properties of IrOx as material for in vivo stimulation electrodes to multi-electrode arrays with electrode diameters as small as 10 μm for in vitro applications. Single rat cortical neurons from dissociated cultures were successfully stimulated to fire action potentials using single or trains of biphasic rectangular voltage-controlled stimulation pulses. The stimulated cell's membrane potential was simultaneously monitored using whole-cell current-clamp recordings. This experimental configuration allowed direct evaluation of the influence of pulse phase sequence, amplitude, and number on the stimulation success ratio and action potential latency. Negative phase first pulses were more effective for extracellular stimulation and caused reduced latency in comparison to positive phase first pulses. Increasing the pulse amplitude also improved stimulation reliability. However, in order to prevent cell or electrode damage, the pulse amplitude is limited to voltages below the threshold for irreversible electrochemical reactions at the electrode. As an alternative to increasing the amplitude, a higher number of stimulation pulses was also shown to increase stimulation success

    Label-Free Ultrasensitive Memristive Aptasensor

    Get PDF
    We present the very first worldwide ever-reported electrochemical biosensor based on a memristive effect and DNA aptamers. This novel device is developed to propose a completely new approach in cancer diagnostics. In this study, an affinity-based technique is presented for the detection of the prostate specific antigen (PSA) using DNA aptamers. The hysteretic properties of memristive silicon nanowires functionalized with these DNA aptamers provide a label-free and ultrasensitive biodetection technique. The ultrasensitive detection is hereby demonstrated for PSA with a limit of detection down to 23 aM, best ever published value for electrochemical biosensors in PSA detection. The effect of polyelectrolytes on our memristive devices is also reported to further show how positive or negative charges affect the memristive hysteresis. With such an approach, combining memristive nanowires and aptamers, memristive aptamer-based biosensors can be proposed to detect a wide range of cancer markers with unprecedent ultrasensitivities to also address the issue of an early detection of cancer

    Direct measurement of oxygen reduction reactions at neurostimulation electrodes

    Get PDF
    Objective. Electric stimulation delivered by implantable electrodes is a key component of neural engineering. While factors affecting long-term stability, safety, and biocompatibility are a topic of continuous investigation, a widely-accepted principle is that charge injection should be reversible, with no net electrochemical products forming. We want to evaluate oxygen reduction reactions (ORR) occurring at different electrode materials when using established materials and stimulation protocols. Approach. As stimulation electrodes, we have tested platinum, gold, tungsten, nichrome, iridium oxide, titanium, titanium nitride, and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). We use cyclic voltammetry and voltage-step amperometry in oxygenated versus inert conditions to establish at which potentials ORR occurs, and the magnitudes of diffusion-limited ORR currents. We also benchmark the areal capacitance of each electrode material. We use amperometric probes (Clark-type electrodes) to quantify the O-2 and H2O2 concentrations in the vicinity of the electrode surface. O-2 and H2O2 concentrations are measured while applying DC current, or various biphasic charge-balanced pulses of amplitude in the range 10-30 mu C cm(-2)/phase. To corroborate experimental measurements, we employ finite element modelling to recreate 3D gradients of O-2 and H2O2. Main results. All electrode materials support ORR and can create hypoxic conditions near the electrode surface. We find that electrode materials differ significantly in their onset potentials for ORR, and in the extent to which they produce H2O2 as a by-product. A key result is that typical charge-balanced biphasic pulse protocols do lead to irreversible ORR. Some electrodes induce severely hypoxic conditions, others additionally produce an accumulation of hydrogen peroxide into the mM range. Significance. Our findings highlight faradaic ORR as a critical consideration for neural interface devices and show that the established biphasic/charge-balanced approach does not prevent irreversible changes in O-2 concentrations. Hypoxia and H2O2 can result in different (electro)physiological consequences

    Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner

    Get PDF
    Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.</p

    Dry Film Resist Laminated Microfluidic System for Electrical Impedance Measurements

    No full text
    In micro-electrical-mechanical systems (MEMS), thick structures with high aspect ratios are often required. Dry film photoresist (DFR) in various thicknesses can be easily laminated and patterned using standard UV lithography. Here, we present a three-level DFR lamination process of SUEX for a microfluidic chip with embedded, vertically arranged microelectrodes for electrical impedance measurements. To trap and fix the object under test to the electrodes, an aperture is formed in the center of the ring-shaped electrodes in combination with a microfluidic suction channel underneath. In a proof-of-concept, the setup is characterized by electrical impedance measurements with polystyrene and ZrO2 spheres. The electrical impedance is most sensitive at approximately 2 kHz, and its magnitudes reveal around 200% higher values when a sphere is trapped. The magnitude values depend on the sizes of the spheres. Electrical equivalent circuits are applied to simulate the experimental results with a close match

    Engineering of Functional Interfaces Preface

    No full text
    status: publishe

    PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals

    No full text
    To understand the physiology and pathology of electrogenic cells and the corresponding tissue in their full complexity, the quantitative investigation of the transmission of ions as well as the release of chemical signals is important. Organic (semi-) conducting materials and in particular organic electrochemical transistor are gaining in importance for the investigation of electrophysiological and recently biochemical signals due to their synthetic nature and thus chemical diversity and modifiability, their biocompatible and compliant properties, as well as their mixed electronic and ionic conductivity featuring ion-to-electron conversion. Here, the aim is to summarize recent progress on the development of bioelectronic devices utilizing polymer polyethylenedioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) to interface electronics and biological matter including microelectrode arrays, neural cuff electrodes, organic electrochemical transistors, PEDOT:PSS-based biosensors, and organic electronic ion pumps. Finally, progress in the material development is summarized for the improvement of polymer conductivity, stretchability, higher transistor transconductance, or to extend their field of application such as cation sensing or metabolite recognition. This survey of recent trends in PEDOT:PSS electrophysiological sensors highlights the potential of this multifunctional material to revolve current technology and to enable long-lasting, multichannel polymer probes for simultaneous recordings of electrophysiological and biochemical signals from electrogenic cells
    corecore