6 research outputs found

    Inversion of crystallization rates in miscible block copolymers of poly(lactide)-block-poly(2-sopropyl-2-oxazoline)

    Get PDF
    Miscible block copolymers (BCPs) are rarely studied. When one or both components of such BCPs are semi-crystalline polymers, strong effects on the crystallization behavior can be expected. We present a study of 18 miscible BCPs comprised of poly(lactide) (PLLA, semi-crystalline and PDLLA, amorphous) and poly(2-isopropyl-2-oxazoline) (PiPOx, semi-crystalline) with PiPOx volume fractions of 0.14 <phi(PiPOx) <0.82. All BCPs exhibit a single glass transition and form a homogeneous melt. Mixing has a plasticizing effect on PiPOx and increases its crystallization rates (DSC). In contrast, the crystallization rates of PLLA are dramatically reduced, or in most cases entirely prevented. During isothermal crystallization at 130 degrees C, the crystallization rates of the BCPs were inverted in comparison with those of the parent homopolymers. Crystallization drives the BCPs to phase separate and the formed crystalline structure is that of the parent homopolymers. The fast crystallization of PiPOx confines the observed superstructure. The BCPs were studied on multiple length scales - from the atomic level (WAXS, IR spectroscopy) to the meso level (AFM, SAXS) and the macroscopic superstructure (polarized optical microscopy). A mechanism of the structure evolution is presented.Peer reviewe

    Research methods for heritage cotton fibres:case studies from archaeological and historical finds in a Finnish context

    No full text
    Abstract Cotton (Gossypium species) was used as textile fibre already in the early Indus culture, and since then it has been cultivated in Tropical and Subtropical regions around the whole planet. The species G. hirsutum is nowadays the dominant cotton crop with more than 90% of the world market, while G. barbadense, G. herbaceum and G. arboreum combined, the other cultivated species of Gossypium genus total a minor part of world’s cotton production. Even in places where cotton was not cultivated, it could be an important trade item and income source for local textile centres, with the imported raw cotton lint being spun, woven and for some part exported from such sites around the globe. This all occurred far away from Finland, until changes brought by the development of long-distance trade and the Industrial Revolution. Based on archaeological finds, cotton as a textile material reached Finland relatively late, in the early Middle Ages. The article focuses on the problematic nature of identifying these cotton finds: whereas modern cotton fibres are easy to identify, the archaeological finds can at first sight be confused with bast or un-degummed silk fibres. This issue will be approached through reviewing recent Finnish cotton finds in heritage textiles. Additionally, the article examines whether the four cultivated cotton species could be differentiated using both classical and newly developed fibre identification methods, such as optical microscopy methods, a Scanning Electron Microscope (SEM), Fourier-transform infrared spectroscopy (FTIR) or Wide-Angle X-ray Scattering (WAXS)
    corecore