164 research outputs found

    Bacterial control of host gene expression through RNA polymerase II

    Get PDF
    The normal flora furnishes the host with ecological barriers that prevent pathogen attack while maintaining tissue homeostasis. Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation in which some patients infected with Escherichia coil develop acute pyelonephritis, while other patients with bacteriuria exhibit an asymptomatic carrier state similar to bacterial commensalism. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease-associated responses in the host. Here, we identify a new mechanism of bacterial adaptation through broad suppression of RNA polymerase II-dependent (Pol II-dependent) host gene expression. Over 60% of all genes were suppressed 24 hours after human inoculation with the prototype asymptomatic bacteriuria (ABU) strain E. coil 83972, and inhibition was verified by infection of human cells. Specific repressors and activators of Pol II-dependent transcription were modified, Pol II phosphorylation was inhibited, and pathogen-specific signaling was suppressed in cell lines and inoculated patients. An increased frequency of strains inhibiting Pol II was epidemiologically verified in ABU and fecal strains compared with acute pyelonephritis, and a Pol II antagonist suppressed the disease-associated host response. These results suggest that by manipulating host gene expression, ABU strains promote tissue integrity while inhibiting pathology. Such bacterial modulation of host gene expression may be essential to sustain asymptomatic bacterial carriage by ensuring that potentially destructive immune activation will not occur

    Interleukin 8 Receptor Deficiency Confers Susceptibility to Acute Experimental Pyelonephritis and May Have a Human Counterpart

    Get PDF
    Neutrophils migrate to infected mucosal sites that they protect against invading pathogens. Their interaction with the epithelial barrier is controlled by CXC chemokines and by their receptors. This study examined the change in susceptibility to urinary tract infection (UTI) after deletion of the murine interleukin 8 receptor homologue (mIL-8Rh). Experimental UTIs in control mice stimulated an epithelial chemokine response and increased chemokine receptor expression. Neutrophils migrated through the tissues to the epithelial barrier that they crossed into the lumen, and the mice developed pyuria. In mIL-8Rh knockout (KO) mice, the chemokine response was intact, but the epithelial cells failed to express IL-8R, and neutrophils accumulated in the tissues. The KO mice were unable to clear bacteria from kidneys and bladders and developed bacteremia and symptoms of systemic disease, but control mice were fully resistant to infection. The experimental UTI model demonstrated that IL-8R–dependent mechanisms control the urinary tract defense, and that neutrophils are essential host effector cells. Patients prone to acute pyelonephritis also showed low CXC chemokine receptor 1 expression compared with age-matched controls, suggesting that chemokine receptor expression may also influence the susceptibility to UTIs in humans. The results provide a first molecular clue to disease susceptibility of patients prone to acute pyelonephritis

    Pyelonephritis in slaughter pigs and sows: Morphological characterization and aspects of pathogenesis and aetiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyelonephritis is a serious disease in pig production that needs to be further studied. The purpose of this study was to describe the morphology, investigate the pathogenesis, and evaluate the aetiological role of <it>Escherichia coli </it>in pyelonephritis in slaughtered pigs by concurrent bacteriological, gross and histopathological examinations.</p> <p>Methods</p> <p>From Danish abattoirs, kidneys and corresponding lymph nodes from 22 slaughtered finishing pigs and 26 slaughtered sows with pyelonephritis were collected and evaluated by bacteriology and pathology. Based on gross lesions, each kidney (lesion) was grouped as acute, chronic, chronic active, or normal and their histological inflammatory stage was determined as normal (0), acute (1), sub-acute (2), chronic active (3), or chronic (4). Immunohistochemical identification of neutrophils, macrophages, T-lymphocytes, B-lymphocytes, plasma cells, <it>E. coli </it>and Tamm-Horsfall protein (THP) in renal sections was performed. The number of <it>E. coli </it>and the proportion of immunohistochemically visualized leukocytes out of the total number of infiltrating leukocytes were scored semi-quantitatively.</p> <p>Results</p> <p>Lesions in finishing pigs and sows were similar. Macroscopically, multiple unevenly distributed foci of inflammation mostly affecting the renal poles were observed. Histologically, tubulointerstitial infiltration with neutrophils and mononuclear cells and tubular destruction was the main findings. The significant highest scores of L1 antigen<sup>+ </sup>neutrophils were in inflammatory stage 1 while the significant highest scores of CD79αcy<sup>+ </sup>B-lymphocytes, IgG<sup>+ </sup>and IgA<sup>+ </sup>plasma cells were in stage 3 or 4. Neutrophils were the dominant leukocytes in stage 1 while CD3Δ<sup>+ </sup>T-lymphocytes dominated in stage 2, 3 and 4. Interstitially THP was seen in 82% and 98% of kidneys with pyelonephritis from finishing pigs and sows, respectively. <it>E. coli </it>was demonstrated in monoculture and/or identified by immunohistochemistry in relation to inflammation in four kidneys from finishing pigs and in 34 kidneys from sows.</p> <p>Conclusions</p> <p><it>E. coli </it>played a significant role in the aetiology of pyelonephritis. Neutrophils were involved in the first line of defence. CD3Δ<sup>+ </sup>T-lymphocytes were involved in both the acute and chronic inflammatory response while a humoral immune response was most pronounced in later inflammatory stages. The observed renal lesions correspond with an ascending bacterial infection with presence of intra-renal reflux.</p

    A Genetic Basis of Susceptibility to Acute Pyelonephritis

    Get PDF
    For unknown reasons, urinary tract infections (UTIs) are clustered in certain individuals. Here we propose a novel, genetically determined cause of susceptibility to acute pyelonephritis, which is the most severe form of UTI. The IL-8 receptor, CXCR1, was identified as a candidate gene when mIL-8Rh mutant mice developed acute pyelonephritis (APN) with severe tissue damage.We have obtained CXCR1 sequences from two, highly selected APN prone patient groups, and detected three unique mutations and two known polymorphisms with a genotype frequency of 23% and 25% compared to 7% in controls (p<0.001 and p<0.0001, respectively). When reflux was excluded, 54% of the patients had CXCR1 sequence variants. The UTI prone children expressed less CXCR1 protein than the pediatric controls (p<0.0001) and two sequence variants were shown to impair transcription.The results identify a genetic innate immune deficiency, with a strong link to APN and renal scarring
    • 

    corecore