111 research outputs found

    Cell type-specific regulation of CCN2 protein expression by PI3K–AKT–FoxO signaling

    Get PDF
    The biological activity of connective tissue growth factor (CTGF, CCN2) is regulated at the level of intracellular signaling leading to gene expression, and by its extracellular interaction partners which determine the functional outcome of CCN2 action. In this overview, we summarize the data which provide evidence that one of the major signaling pathways, phosphatidylinositol-3 kinase (PI3K)–AKT signaling, shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In smooth muscle cells, fibroblasts, and epithelial cells, inhibition of this pathway either reduced CCN2 expression or was not involved in CCN2 gene expression depending on the stimulus used. In microvascular endothelial cells by contrast, activation of PI3K–AKT signaling was inversely related to CCN2 expression. Upregulation of CCN2 upon inhibition of PI3K–AKT was also observed in primary cultures of human endothelial cells (HUVEC) exposed to laminar flow in an in vitro flow-through system. In different types of endothelial cells, FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression. In HUVEC, we observed a correlation between enhanced nuclear localization of FoxO1 and increased synthesis of CCN2 protein in areas of non-uniform shear stress. These data indicate that FoxO proteins are key regulators of CCN2 gene expression which determine the effect of PI3K–AKT activation in terms of CCN2 regulation. Short summary Phosphatidylinositol-3 kinase (PI3K)–AKT signaling shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In endothelial cells activation of PI3K - AKT signaling was inversely related to CCN2 expression. FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression

    Antiproliferative activity of PEP005, a novel ingenol angelate that modulates PKC functions, alone and in combination with cytotoxic agents in human colon cancer cells

    Get PDF
    PEP005 is a novel ingenol angelate that modulates protein kinases C (PKC) functions by activating PKCδ and inhibiting PKCα. This study assessed the antiproliferative effects of PEP005 alone and in combination with several other anticancer agents in a panel of 10 human cancer cell lines characterised for expression of several PKC isoforms. PEP005 displayed antiproliferative effects at clinically relevant concentrations with a unique cytotoxicity profile that differs from that of most other investigated cytotoxic agents, including staurosporine. In a subset of colon cancer cells, the IC50 of PEP005 ranged from 0.01–140 μM. The antiproliferative effects of PEP005 were shown to be concentration- and time-dependent. In Colo205 cells, apoptosis induction was observed at concentrations ranging from 0.03 to 3 μM. Exposure to PEP005 also induced accumulation of cells in the G1 phase of the cell cycle. In addition, PEP005 increased the phosphorylation of PKCδ and p38. In Colo205 cells, combinations of PEP005 with several cytotoxic agents including oxaliplatin, SN38, 5FU, gemcitabine, doxorubicin, vinorelbine, and docetaxel yielded sequence-dependent antiproliferative effects. Cell cycle blockage induced by PEP005 in late G1 lasted for up to 24 h and therefore a 24 h lag-time between PEP005 and subsequent exposure to cytotoxics was required to optimise PEP005 combinations with several anticancer agents. These data support further evaluation of PEP005 as an anticancer agent and may help to optimise clinical trials with PEP005-based combinations in patients with solid tumours

    Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy

    Get PDF
    Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders

    Visual acuity and foveal thickness after vitrectomy for macular edema associated with branch retinal vein occlusion: a case series

    Get PDF
    Abstract Background The mechanism by which vitrectomy improves macular edema in patients with branch retinal vein occlusion remains unclear, although intraocular levels of vascular endothelial growth factor have been suggested to influence the visual prognosis and macular edema. Methods A series of 54 consecutive patients (54 eyes) with branch retinal vein occlusion was studied prospectively. All patients underwent pars plana vitrectomy for treatment of macular edema. Best corrected visual acuity and retinal thickness (examined by optical coherence tomography) were assessed before and after surgery. The level of vascular endothelial growth factor in vitreous fluid harvested at operation was determined. Patients were followed for at least 6 months postoperatively. Results Both the visual acuity and the retinal thickness showed significant improvement at 6 months postoperatively (P = 0.0002 and P Conclusions These results suggest that the vitreous level of vascular endothelial growth factor might influence the visual prognosis and the response of macular edema to vitrectomy in patients with branch retinal vein occlusion.</p

    The role of thrombospondins in wound healing, ischemia, and the foreign body reaction

    Get PDF
    Thrombospondin (TSP) 1 and TSP2 have been implicated in the regulation of several processes during tissue repair. Due to their matricellular nature, these proteins are thought to modulate cell-matrix interactions through a variety of mechanisms specific to the spatio-temporal context of their expression. Most notably, TSP1 and TSP2 appear to play distinct, non-overlapping roles in the healing of skin wounds. In contrast, both proteins have been implicated as regulators of ischemia-induced angiogenesis. Moreover, TSP2 has been shown to be a critical regulator of angiogenesis in the foreign body response (FBR). In this review, we discuss the role of TSPs in tissue repair and examine the mechanistic data regarding the ability of the thrombospondins to modulate cell-matrix interactions in this context

    Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina

    Get PDF
    Aims/hypothesis Referred to as CCN, the family of growth factors consisting of cystein-rich protein 61 (CYR61, also known as CCN1), connective tissue growth factor (CTGF, also known as CCN2), nephroblastoma overexpressed gene (NOV, also known as CCN3) and WNT1-inducible signalling pathway proteins 1, 2 and 3 (WISP1, -2 and -3; also known as CCN4, -5 and -6) affects cellular growth, differentiation, adhesion and locomotion in wound repair, fibrotic disorders, inflammation and angiogenesis. AGEs formed in the diabetic milieu affect the same processes, leading to diabetic complications including diabetic retinopathy. We hypothesised that pathological effects of AGEs in the diabetic retina are a consequence of AGE-induced alterations in CCN family expression. Materials and methods CCN gene expression levels were studied at the mRNA and protein level in retinas of control and diabetic rats using real-time quantitative PCR, western blotting and immunohistochemistry at 6 and 12 weeks of streptozotocin-induced diabetes in the presence or absence of aminoguanidine, an AGE inhibitor. In addition, C57BL/6 mice were repeatedly injected with exogenously formed AGE to establish whether AGE modulate retinal CCN growth factors in vivo. Results After 6 weeks of diabetes, Cyr61 expression levels were increased more than threefold. At 12 weeks of diabetes, Ctgf expression levels were increased twofold. Treatment with aminoguanidine inhibited Cyr61 and Ctgf expression in diabetic rats, with reductions of 31 and 36%, respectively, compared with untreated animals. Western blotting showed a twofold increase in CTGF production, which was prevented by aminoguanidine treatment. In mice infused with exogenous AGE, Cyr61 expression increased fourfold and Ctgf expression increased twofold in the retina. Conclusion/interpretation CTGF and CYR61 are downstream effectors of AGE in the diabetic retina, implicating them as possible targets for future intervention strategies against the development of diabetic retinopath

    Admixture Mapping Scans Identify a Locus Affecting Retinal Vascular Caliber in Hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    Retinal vascular caliber provides information about the structure and health of the microvascular system and is associated with cardiovascular and cerebrovascular diseases. Compared to European Americans, African Americans tend to have wider retinal arteriolar and venular caliber, even after controlling for cardiovascular risk factors. This has suggested the hypothesis that differences in genetic background may contribute to racial/ethnic differences in retinal vascular caliber. Using 1,365 ancestry-informative SNPs, we estimated the percentage of African ancestry (PAA) and conducted genome-wide admixture mapping scans in 1,737 African Americans from the Atherosclerosis Risk in Communities (ARIC) study. Central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) representing summary measures of retinal arteriolar and venular caliber, respectively, were measured from retinal photographs. PAA was significantly correlated with CRVE (ρ = 0.071, P = 0.003), but not CRAE (ρ = 0.032, P = 0.182). Using admixture mapping, we did not detect significant admixture association with either CRAE (genome-wide score = −0.73) or CRVE (genome-wide score = −0.69). An a priori subgroup analysis among hypertensive individuals detected a genome-wide significant association of CRVE with greater African ancestry at chromosome 6p21.1 (genome-wide score = 2.31, locus-specific LOD = 5.47). Each additional copy of an African ancestral allele at the 6p21.1 peak was associated with an average increase in CRVE of 6.14 µm in the hypertensives, but had no significant effects in the non-hypertensives (P for heterogeneity <0.001). Further mapping in the 6p21.1 region may uncover novel genetic variants affecting retinal vascular caliber and further insights into the interaction between genetic effects of the microvascular system and hypertension

    The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy

    Get PDF
    BACKGROUND: In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. METHODS/PRINCIPAL FINDINGS: VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32), macular hole (N = 13) or macular pucker (N = 23) and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4) were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. CONCLUSIONS/SIGNIFICANCE: CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy
    corecore