3,764 research outputs found

    Phosphatidylinositol Transfer Protein-α in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis

    Get PDF
    Platelets are increasingly recognized for their contributions to tumor metastasis. Here, we show that the phosphoinositide signaling modulated by phosphatidylinositol transfer protein type α (PITPα), a protein which shuttles phosphatidylinositol between organelles, is essential for platelet-mediated tumor metastasis. PITPα-deficient platelets have reduced intracellular pools of phosphoinositides and an 80% reduction in IP3 generation upon platelet activation. Unexpectedly, mice lacking platelet PITPα form thrombi normally at sites of intravascular injuries. However, following intravenous injection of tumor cells, mice lacking PITPα develop fewer lung metastases due to a reduction of fibrin formation surrounding the tumor cells, rendering the metastases susceptible to mucosal immunity. These findings demonstrate that platelet PITPα-mediated phosphoinositide signaling is inconsequential for in vivo hemostasis, yet is critical for in vivo dissemination. Moreover, this demonstrates that signaling pathways within platelets may be segregated into pathways that are essential for thrombosis formation and pathways that are important for non-hemostatic functions

    Advancing tephrochronology as a global dating tool: Applications in volcanology, archaeology, and palaeoclimatic research

    Get PDF
    Layers of far-travelled volcanic ash (tephra) from explosive volcanic eruptions provide stratigraphic and numerical dating horizons in sedimentary and volcanic sequences. Such tephra layers may be dispersed over tens to thousands of kilometres from source, reaching far beyond individual volcanic regions. Tephrochronology is consequently a truly global dating tool, with applications increasingly widespread across a range of Quaternary and geoscience disciplines. This special issue of the International Focus Group on Tephrochronology and Volcanism (INTAV) showcases some of the many recent advances in tephrochronology, from methodological developments to diverse applications across volcanological, archaeological, and palaeoclimatological research

    Linking wheelchair kinetics to glenohumeral joint demand during everyday accessibility activities

    Get PDF
    The aim of the study was to investigate if push-rim kinetics could be used as markers of glenohumeral joint demand during manual wheelchair accessibility activities; demonstrating a method of biomechanical analysis that could be used away from the laboratory. Propulsion forces, trunk and upper limb kinematics and surface electromyography were recorded during four propulsion tasks (level, 2.5% cross slope, 6.5% incline and 12% incline). Kinetic and kinematic data were applied to an OpenSim musculoskeletal model of the trunk and upper limb, to enable calculation of glenohumeral joint contact force. Results demonstrated a positive correlation between propulsion forces and glenohumeral joint contact forces. Both propulsion forces and joint contact forces increased as the task became more challenging. Participants demonstrated increases in trunk flexion angle as the requirement for force application increased, significantly so in the 12% incline. There were significant increases in both resultant glenohumeral joint contact forces and peak and mean normalized muscle activity levels during the incline tasks. This study demonstrated the high demand placed on the glenohumeral joint during accessibility tasks, especially as the gradient of incline increases. A lightweight instrumented wheelchair wheel has potential to guide the user to minimize upper limb demand during daily activity

    Forward-backward Asymmetry and Branching Ratio of B \rar K_1 \ell^+ \ell^- Transition in Supersymmetric Models

    Full text link
    The mass eigen states K1(1270)K_1(1270) and K1(1400)K_1(1400) are mixture of the strange members of two axial-vector SU(3) octet, 3P1(K1A)^3P_1(K_1^A) and 1P1(K1B)^1P_1(K_1^B). Taking into account this mixture, the forward-backward asymmetry and branching ratio of B \rar K_1(1270,1400) \ell^+ \ell^- transitions are studied in the framework of different supersymmetric models. It is found that the results have considerable deviation from the standard model predictions. Any measurement of these physical observables and their comparison with the results obtained in this paper can give useful information about the nature of interactions beyond the standard model.Comment: 14 pages, 4 figure

    CD40, autophagy and Toxoplasma gondii

    Full text link
    Toxoplasmagondii represents a pathogen that survives within host cells by preventing the endosomal-lysosomal compartments from fusing with the parasitophorous vacuoles. The dogma had been that the non-fusogenic nature of these vacuoles is irreversible. Recent studies revealed that this dogma is not correct. Cell-mediated immunity through CD40 re-routes the parasitophorous vacuoles to the lysosomal compartment by a process called autophagy. Autophagosome formation around the parasitophorous vacuole results in killing of the T. gondii. CD40-induced autophagy likely contributes to resistance against T. gondii particularly in neural tissue

    The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Get PDF
    Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis. <p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. <p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. <p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL

    Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene

    Get PDF
    Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    Adenosine A2A receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice

    Get PDF
    © 2009 Nature Publishing Group All rights reservedPrevious in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation(LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A2A receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A2A receptor antagonist, SCH58261, upon a well-known associative learning paradigm - classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus(US). A single electrical pulse was presented to the Schaffer collateral–commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS–US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.)-injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261- injected mice. In conclusion, the endogenous activation of adenosine A2A receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.This study was supported by grants from the Spanish Ministry of Education and Research (BFU2005-01024 and BFU2005-02512), Spanish Junta de Andalucía (BIO-122 and CVI-02487), and the Fundación Conocimiento y Cultura of the Pablo de Olavide University (Seville, Spain).B. Fontinha was in receipt of a studentship from a project grant (POCI/SAU-NEU/56332/2004) supported by Fundação para a Ciência e Tecnologia (FCT, Portugal), and of an STSM from Cost B30 concerted action of the EU
    corecore