1,199 research outputs found

    Proto-clusters in the Lambda CDM Universe

    Full text link
    We compare the highly clustered populations of very high redshift galaxies with proto-clusters identified numerically in a standard Λ\LambdaCDM universe (Ω0=0.3,λ0=0.7\Omega_0=0.3, \lambda_0=0.7) simulation. We evolve 256^3 dark matter particles in a comoving box of side 150h^{-1}Mpc. By the present day there are 63 cluster sized objects of mass in excess of 10^{14}h^{-1}Mo in this box. We trace these clusters back to higher redshift finding that their progenitors at z=4--5 are extended regions of typically 20--40 Mpc (comoving) in size, with dark halos of mass in excess of 10^{12}h^{-1}Mo and are overdense by typically 1.3--13 times the cosmological mean density. Comparison with the observation of Lyman alpha emitting (LAEs) galaxies at z=4.86 and at z=4.1 indicates that the observed excess clustering is consistent with that expected for a proto-cluster region if LAEs typically correspond to massive dark halos of more than 10^{12}h^{-1}Mo. We give a brief discussion on the relation between high redshift concentration of massive dark halos and present day rich clusters of galaxies.Comment: 4 pages, 5 figures, Accepted for publication in ApJ Letter

    Cluster Morphologies as a Test of Different Cosmological Models

    Full text link
    We investigate how cluster morphology is affected by the cosmological constant in low-density universes. Using high-resolution cosmological N-body/SPH simulations of flat (\Omega_0 = 0.3, \lambda_0 = 0.7, \Lambda CDM) and open (\Omega_0 = 0.3, \lambda_0 = 0, OCDM) cold dark matter universes, we calculate statistical indicators to quantify the irregularity of the cluster morphologies. We study axial ratios, center shifts, cluster clumpiness, and multipole moment power ratios as indicators for the simulated clusters at z=0 and 0.5. Some of these indicators are calculated for both the X-ray surface brightness and projected mass distributions. In \Lambda CDM all these indicators tend to be larger than those in OCDM at z=0. This result is consistent with the analytical prediction of Richstone, Loeb, & Turner, that is, clusters in \Lambda CDM are formed later than in OCDM, and have more substructure at z=0. We make a Kolmogorov-Smirnov test on each indicator for these two models. We then find that the results for the multipole moment power ratios and the center shifts for the X-ray surface brightness are under the significance level (5%). We results also show that these two cosmological models can be distinguished more clearly at z=0 than z = 0.5 by these indicators.Comment: 30pages, 6figures, Accepted for publication in Ap

    Evidence for Acquisition in Nature of a Chromosomal 2,4-Dichlorophenoxyacetic Acid/(alpha)-Ketoglutarate Dioxygenase Gene by Different \u3ci\u3eBurkholderia\u3c/i\u3e spp.

    Get PDF
    We characterized the gene required to initiate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by the soil bacterium Burkholderia sp. strain TFD6, which hybridized to the tfdA gene of the canonical 2,4-D catabolic plasmid pJP4 under low-stringency conditions. Cleavage of the ether bond of 2,4-D by cell extracts of TFD6 proceeded by an (alpha)-ketoglutarate-dependent reaction,characteristic of TfdA (F. Fukumori and R. P. Hausinger, J. Bacteriol. 175:2083-2086, 1993). The TFD6 tfdA gene was identified in a recombinant plasmid which complemented a tfdA transposon mutant of TFD6 created by chromosomal insertion of Tn5. The plasmid also expressed TfdA activity in Escherichia coli DH5(alpha), as evidenced by enzyme assays with cell extracts. Sequence analysis of the tfdA gene and flanking regions from strain TFD6 showed 99.5% similarity to a tfdA gene cloned from the chromosome of a different Burkholderia species (strain RASC) isolated from a widely separated geographical area. This chromosomal gene has 77.2% sequence identity to tfdA from plasmid pJP4 (Y. Suwa, W. E. Holben, and L. J. Forney, abstr. Q-403, in Abstracts of the 94th General Meeting of the American Society for Microbiology 1994.). The tfdA homologs cloned from strains TFD6 and RASC are the first chromosomally encoded 2,4-D catabolic genes to be reported. The occurrence of highly similar tfdA genes in different bacterial species suggests that this chromosomal gene can be horizontally transferred

    Magnetar-powered supernovae in two dimensions. II. Broad-line supernovae Ic

    Get PDF
    Nascent neutron stars with millisecond periods and magnetic fields in excess of 101610^{16} Gauss can drive highly energetic and asymmetric explosions known as magnetar-powered supernovae. These exotic explosions are one theoretical interpretation for supernovae Ic-BL which are sometimes associated with long gamma-ray bursts. Twisted magnetic field lines extract the rotational energy of the neutron star and release it as a disk wind or a jet with energies greater than 1052^{52} erg over 20\sim 20 sec. What fractions of the energy of the central engine go into the wind and the jet remain unclear. We have performed two-dimensional hydrodynamical simulations of magnetar-powered supernovae (SNe) driven by disk winds and jets with the CASTRO code to investigate the effect of the central engine on nucleosynthetic yields, mixing, and light curves. We find that these explosions synthesize less than 0.05 Msun of Ni and that this mass is not very sensitive to central engine type. The morphology of the explosion can provide a powerful diagnostic of the properties of the central engine. In the absence of a circumstellar medium these events are not very luminous, with peak bolometric magnitudes Mb16.5M_b \sim -16.5 due to low Ni production.Comment: Accepted to Ap

    Inferring Core-Collapse Supernova Physics with Gravitational Waves

    Get PDF
    Stellar collapse and the subsequent development of a core-collapse supernova explosion emit bursts of gravitational waves (GWs) that might be detected by the advanced generation of laser interferometer gravitational-wave observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from core-collapse supernovae encode information on the intricate multi-dimensional dynamics at work at the core of a dying massive star and may provide direct evidence for the yet uncertain mechanism driving supernovae in massive stars. Recent multi-dimensional simulations of core-collapse supernovae exploding via the neutrino, magnetorotational, and acoustic explosion mechanisms have predicted GW signals which have distinct structure in both the time and frequency domains. Motivated by this, we describe a promising method for determining the most likely explosion mechanism underlying a hypothetical GW signal, based on Principal Component Analysis and Bayesian model selection. Using simulated Advanced LIGO noise and assuming a single detector and linear waveform polarization for simplicity, we demonstrate that our method can distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc) and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc. Furthermore, we show that we can differentiate between models for rotating accretion-induced collapse of massive white dwarfs and models of rotating iron core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure
    corecore