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RESIDUES AND TOPOLOGICAL INVARIANTS
OF SINGULAR HOLOMORPHIC FOLIATIONS!

JOSE SEADE AND TATSUO SUwA

The theorem of Poincaré-Hopf says that the total index of a vector field v
on a closed, smooth, oriented n-manifold M is independent of the vector field and
it equals the Euler-Poincaré characteristic of M, x(M). A vector field v is actually
determined, up to scaling, by the foliation on M given by its integral curves. It is
natural to ask whether there is a similar theorem for higher dimensional oriented
foliations. If the foliation F is non-singular, this is well known: One has,

x(M) = e(M)[M] = e(TF) - e(NF)[M],

where e( ) is the Euler class, TF is the tangent bundle of F, NF is its normal bundle
with respect to some riemannian metric, and [M] is the orientation cycle. However,
if the foliation F is singular, the question is more interesting. If the manifold M
and the foliation F are both complex analytic, then one has the tangent and the
normal sheaves of F. Both sheaves are coherent [BB], so they have resolutions by
‘vector bundles, giving rise to well defined Chern classes of these sheaves [AH]. These
classes satisfy:

X(M) = cn(M)[M] = (cn(F) + cn1(F) - c2(@) + -+ + ca(Q))[M]
= ¢p(F) - cn—p(@)[M] + [Contribution of singular set ] ,

where F is the tangent sheaf, () is the normal sheaf, p is the rank (or leaf dimension)
of F, and the “contribution of S” involves all the terms that vanish when F is non-
singular. One has similar formulae for the lower Chern classes of M in terms of
those of F and @. This “contribution of S” is somehow explained by P. Baum and
R. Bott in [BB]: They proved that given any homogeneous symmetric polynomial
¢ of degree d > n — p, there exists a homology class Res,(F,S) € Han—24(S;C), -
where S is the singular set of F, such that

©(Q) = px Resy(F, S),
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where p, is induced by the inclusion S < M followed by Poincaré duality. Generally
speaking these residues are rather misterious and difficult to compute. However, in
some cases they are well understood. For instance, it is well known (and we re-prove
it here, in 4.3 below) that if 7 has complex dimension one, ¢ is o, (the elementary
symmetric polynomial of degree n) and S consists of isolated points P, ..., Py, then
there exists a vector field v; on a neighbourhood of each P;, singular only at P; and
tangent to F, and Res,, (F,S) is the sum of the local indices of the v;’s. One has
in this case:

X(M) = ca(M)[M] = c1(F) - cn-1(Q)[M] + Reso,, (F, 5).

If the codimension of F is one, there is a similar interpretation of the Baum-Bott
residue [Sul]. B ) , s S . ;

This article can be regarded as being both, an extension of [BB] to open
manifolds, and an extension of our previous article [SS] to higher dimensional foli-
ations on singular varieties. ’

In §1 we extend the Baum-Bott theory of residues to singular holomorphic

foliations on open manifolds which are relatively compact submanifolds of a com-

~ plex manifold. We also discuss the behaviour of characteristic classes under the
existence of non-singular vector fields, near the boundary, tangent to the foliation.
In §2 and §3 we make the topological counterpart to [BB] and to §1; This applies
to C*°, singular foliations on oriented manifolds. By comparing these two theories,
the analytic one and the topological one, we obtain in §4 some new insights into
the behaviour of the characteristic classes and the Baum-Bott residues of singular
holomorphic foliations on complex manifolds. In §5 and §6 we study the case when
the phase space is complex analytic, with isolated complete intersection singulari-
ties. We define, in §6, an invariant for foliations on germs of complete intersections
with isolated singularity and prove that this is a topological invariant. This extends
the index of 2-dimensional foliations defined in [GSV], and the Milnor number of a
1-dimiensional holomorphic foliation defined in [CLS]. We also study its behaviour
when we consider resolutions of the singularity.

The basic tool for defining this invariant is the index of a vector field on
a singular variety, that we study in §5. There are several different notions of such
index: The Schwartz index [Sc,BSc,KT], the GSV-index [Se,GSV,SS], the homolog-
ical index of [G] and the differential index of [LSS], which turn out to (essentially)
coincide. We determine the relationship between the Schwartz index and the GSV-
index, and we prove a theorem about the total index of a vector field on a compact
variety whose singularities are all isolated complete intersections (ICIS). As an ap-
plication, we give a formula for the Chern number of the virtual tangent bundle
of a (strong) local complete intersection with isolated singularities, which is a gen-
eralization of the classical adjunction formula for singular curves in surfaces. It is
also used in showing a formula for the Chern-Schwartz-MacPherson class of such a
variety in [Su2].
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§1. Chern classes and the Baum-Bott residues

Let M be a connected, relatively compact open set in a complex manifold
of dimension n > 1, with non-empty smooth boundary M. For instance, M
can be taken to be a neighbourhood of a compact, connected component of the
singular set of a holomorphic foliation on a complex manifold. We denote by TM
the holomorphic tangent bundle of M. Also, denoting by Oy the structure sheaf
of M, let Oy = Op(TM) be the tangent sheaf of M. (The tangent sheaf of) a
singular holomorphic foliation on M is defined ([BB, p.281]) to be a full integrable
coherent subsheaf F of ©. Set Q@ = ©p/F, the quotient sheaf; Q is the normal
sheaf of the foliation, and one has the exact sequence

(11) 0= F o0y —Q—0.

The singular set S of F is the set of points where @ is not Ops-free. We assume
that S does not intersect a neighbourhood of the boundary of M and that the
codimension of S is at least two. The sheaf F defines an ordinary foliation on
M — S, and we let p be the dimension of the leaves of this foliation. In what follows,
we do not distinguish between a holomorphic vector bundle and the correspondmg
locally free sheaf. Thus away from S, F and Q are vector bundles of ranks p and
n — p, respectively.

We recall [BB] that on M — S, F “acts” on @, because F is integrable: If
n: © — @ is the projection, then the action is given by

(u,7(v)) = [u, n(v)] = n([u, v]),

for every u € F and n(v) € Q. Thus one has a partial connection for Q on M — S,
[BB, p.290],

§:C®(Q)— C¥(FOTM) ® Q) ~ C*(Hom(F,Q) & T M @ Q),

defined by é(s) = (u +— [u,s],8s). One can easily see [BB; 2.5] that there ex-
ists a connection D_; for Q@ on M — S extending §, i.e., the following diagram is
commutative:

CeQ) =  C=(r* Q)

|- =

C=(Q) —— C>((F®TM)* ®Q),
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where 7 = TM & TM and p is the canonical surjection 7* — (F @ TM)*. Any
connection on () extending the partial connection is called a basic connection ([BB]).
Since @ is coherent, we can take a resolution by vector bundles on M ([AH])

0—Lr—-+—>Ly—Q—0,

and connections (DY, ...,Dgy,D_1) on M — S, compatible with this sequence, where
D_, is a basic connection for @ on M — S, [BB;4.17]. Let {Z,} be the connected
components of S. For each Z,, we take a regular neighbourhood U, of Z, and a
compact set X, so that Uy NUg = ¢ if & # B and that Z, C Int ¥, C Ly C U,
Set ¥ = UL, and extend each D!, 0 < i < r, to a connection D; for L; on M which
coincides with D} on M — X, [BB;4.41]. The connections D; define curvatures K;
on M and D_; defines K_; on M — S. Since they are compatible with the exact
sequence on M — X, we have =~ - ' ;

(1 + 0'1(K_1) 4o an(K_l)) = f[(l + Ul(Kj) + -4 Un(Kj))e(j),
J=0

where 01,...,0, are the elementary symmetric functions in n variables and ¢(j) =
(—1)?. Define, for each i = 1,...,n, a 2i-form w; on M by

r

14w+ Fwp = H(l +o1(Kj) + - +an(Kj))‘(j).

j=0

On M — %, w; = 0;(K_1), so these are 0 for 1 > n — p.
Let ¢ be a homogeneous symmetric polynomial of degree d, and write it as
a polynomial in the elementary symmetric functions:

v = P(01,...,00),

so by definition one has p(w) = P(w;,...,wy), a closed 2d-form on M. One has,

cp(w) = P(Ul(K—l)a '~-70n(K—1))’

on M —3%. If d > n— p, this form is identically 0, by Bott’s vanishing theorem [BB;

. : . v=1\¢
3.27), because D_, is basic. Hence p(w) has support in X. Therefore { ¥—) ¢(w)

represents a relative class
#(Q) € H*(M, M - 5;C),

whose image 7*(3(Q)) is ¢(Q) in H2¢(M;C). By Alexander-Lefschetz duality one
has
H2d(MaM - S; C) %’ H2n-2d(S; C) = @aH2n—2d(Za; C)

4



In other words, we can write

(12) 3(Q) =) _ pta Resy(F, Za),

where p, = L~! and Res,(F,Z,) is a class in Hap—24(Za;C). Moreover, by
[BB,5.31], the class $(Q) does not depend on the choice of the basic connection
nor the resolution of ). Thus one has the following residue formula in the relative
cohomology, which is basically in [BB].

1.1 Theorem. Let ¢ be a homogeneous symmetric polynomial of degree d > n—p.
Then, there exists a relative cohomology class, ¢(Q) € H?4(M,0M;C) that maps
to p(Q) € H?*4(M;C) under the morphism j* induced by the inclusion, and @(Q)
is a sum of residues localized at the singular set S of the foliation, '

SE(Q) = Z s Restp(j:a Za)7

where the sum runs over the connected components of S.

Note that in view of the commutative diagram

H*(M,M - S;C) —— H?4(M,0M;C)

| |

H2n—2d(s; C) —_— H2n—2d(M; C),

the formula (1;) is “more precise” than the one in the theorem.

Let us assume now that one has C*° vector fields sy, ..., s on a neighbour-
hood U of the boundary 0M, linearly independent everywhere on U and tangent
to F, 0 < k < p. We refer to the set f = {s1,...,s;} as a k-frame on U. We will use
this k-frame to construct representatives of the Chern classes of F that vanish near
OM. We let F' = F|y, and we let Fy be the sub-bundle of F' spanned by s3, ..., sk.
Thus on U,

F=Fo&Hmn,

as C°-bundles, where F} is the orthogonal complement of F. Let Vj be the trivial
connection for Fy determined by f, and V; an arbitrary connection for Fy. We
define a connection D' for F on U by D' = Vy & V;. We may take a compact set
C in M such that M — U in contained in the interior of C, and a connection D for
F on M — S such that D = D' on M — C, [BB,4.41].

Taking a resolution of F by vector bundles on M, one has an exact sequence

(13) 02 E;— .-+ — Ey—F—0.
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Let (D, ..., Dy) be connections for the E;’s on M — S, such that (Dy, ..., D, D) are
compatible with the exact sequence. We extend each D} to a connection D; on M,

which agrees with D} on M —X. We have curvature matrices Ky, ..., Ko, determined
by Dy, ...,Dg. Define, for each i = 1,...,n, a (closed) 2i-form p; on M by

q
(L) L4 1+ 4 pa = [[(L+02(Ky) + - + 0u(E;))O.

3=0

Since (Dy, ..., Do, D) are compatible with the exact sequence on M — X, one
has p; = 0;(K) on M — %, where K is the curvature matrix K = df — 6 A 8 of
the connection D. Also, since the connection matrix 6 of D (with respect to an
g 00 ) on U — C, with 6; the connection

1 . .

appropriate frame) is of the form 6 =
matrix of Vi, we have thé‘followling lemma.

1.2 Lemma. For p—k < i < n, one has oi(K)=0,0onU - C.

The lemma above implies that the p;’s are globally defined and have compact

support, in the appropiate range, since they vanish on U — C. Define

(5= (G2 Ini € B, 00850,

for: = p—k+1,...,n. These are the Chern classes of F relative to the k-frame
f. By definition one has j*(¢;(F)) = ci(F), so their image in H*(M;C) under
the homomorphism induced by the inclusion are the usual Chern classes of F. We
note however that the classes ép41(F), ..., éx(F) actually vanish on M by rank
reasons, because F is locally free of rank p on a neighbourhood of OM, while
Ep—k+1(F), ..., Ep(F) are relative because we have the k-frame f, and they depend
of the choice of f as relative classes. Hence we denote the latter classes by c;(F,f)
when we want to emphazise their dependence on f.

Let Fy be again the sub-vector bundle of T M spanned by f on a neighbour-
hood U’ of the boundary M. Let V; be the trivial connection for Fy determined
by f and V; some connection for the orthogonal complement of Fy in TM. Then
D' = V@V, is a connection for TM on U'. As before, we now extend D’ to a con-
nection D for TM on all of M, that coincides with D' on a neighbourhood U c U’
of M. Let K be the curvature matrix of D, so that the symmetric functions o;(K)
determine the usual Chern classes of T'M,

(M) = (Q) loi(R)].

We note that, as in Lemma 1.2, 0;(K) vanishes identically on U for i > n — k.
Hence, these forms o;(K) provide representatives ¢;(T'M, f) of the Chern classes of

TM, that vanish over U for i > n — k, i.e., they are classes in H?(M,0M;C).

6



1.3 Definition. (cf. [Ke]) The Chern classes cp—it1(TM,T), ..., ca(TM,f), are
the Chern classes of TM relative to the k-frame f.

If 7* is the inclusion homomorphism, then j*(c;,(TM, f )) is the usual Chern
class ¢;(TM), but as a relative class ¢;(TM,f) does depend on the choice of the
k-frame f, generally speaking.

1.4 Theorem. Let M and F be as above. Suppose we are given k C* sections
81,...;8k of TM on a neighbourhood U of OM, 1 < k < p, which are everywhere
tangent to F and linearly independent over C. Then, for all j withn—k+1 < j < n,
one has: :

J—ptk—1 J
G(TM,) = Y (@) &GP+ Y. &Q)-cj—i(F)
t=o0 i=j—p+k

where ¢;(TM,f), &(F) € H*(M,0M), are the Chern classes of M and F, respec-
tively, relative to the k-frame f = {sy, ..., s}, and the &;(Q)’s are the representatives
of the Chern classes of the normal sheaf Q defined above. Moreover, each &(Q) is
localized at the singular set S of F: (Residue formula in relative cohomology)

&(Q) =Y pReso(F,Z), n-p+1<i<n,
AR

where the sum runs over the connected components of the singular set S,
Resq,(F,Z) € Han—2i(S;Z) is the corresponding Baum-Bott residue, and p, is
given by the inclusion H.(S) — H.(M) followed by Alexander-Lefschetz duality
H,(M)~ H*(M,0M).

Proof. The residue formula is in Theorem 1.1 (in fact, for ¢ = o, it is not necessary
to take a basic connection), so we only need to prove the first statement in 1.4. The
exact sequences (1;) and (13) determine a resolution of Q;

0—E,—...>FE —-TM—-Q—0

on M. Let D be a connection for F on M — constructed as before and (Dyg, .., Dp)
connections for the E;’s on M — § such that (Dg,-..,Dq, D) are compatlble with
(13). Taking a basic connection D_; for Q on M — S, let D' be a connection for TM
on M — S so that (D, D', D_,) are compatible with (1). Then (Dy,..., Dy, D',D_y)
are compatlble with the above sequence. We extend the connections D' and D} to -
connections D and D; on M so that the corresponding connections agree on M —X.
Let K;, K and K_; denote the curvatures of D;, D and D_4, respectively. The
form o;(K) defines the class ¢i(TM) and, in part1cu1ar, fn—k+1<i<n,it
defines the class ¢;(TM, f). Also, if we define the p;’s by (14) as before, the 2i- form

7



pi defines the class ¢;(F) and, in particular, if p —k+1<i<n, it defines the class
éi(F). Finally, if we define the w;’s by

(Is) 14w+ twn=Q+aE)+- 40 (K) - Q+p+-+pa)7,

the 2i-form w; defines the class ¢;(Q) and, in particular, if n —p+1 <37 < n, it
defines the class &;(Q). Hence we have the identity in 1.4. O

The Chern classes of T'M relative to the k-frame f were constructed above
via differential geometry, but they can also be defined via obstruction theory as in
[Ke]. We do this in §3 below.

There are two interesting special cases: One is when F has isolated singu-
larities and we have one vector field tangent to F; This is discussed in §4 below. The
‘other special case is when the number of vector fields sy, ..., s equals the dimension
of F, i.e.,, k = p, so that sy, ..., determine a trivialization of F on a neighbour-
hood of the boundary. This happens, for instance, when the foliation is given by
the action of CP. We prove that in this case the Chern classes of the normal sheaf
are computable from the Chern classes of M and F, in the appropiate range:

1.5 Theorem. Ifk = p, fori = 1,...,n, define d; € H*(M,8M) by,
(14di+- 4 dp)(1+E(F) + - +&(F)) = 1.

Then
j-1

&(Q) =) c(TM)-dj—1 +&(TM),

1=0
forn—p+1<j<n.

Proof. If k = p, then all the p;’s have compact support. Observe that the form
1+ p1 + -+ + pn is invertible, because it starts with 1, so there exists 2i-forms 7;,
t=1,...,n, such that

(A+m+-trm)ltp+-tpa)=1,

and the 7;’s also have compact support. For each : = 1, ..., n, define

i = (g) .

These are the classes stated in Theorem 1.5. O

One also has in this case (when k = p) the following extension of 1.4, which
is proved similarly, using (15) and noting that all the p;’s have compact support as
in 1.5, so we only state the theorem.



1.6 Theorem. Let k = p. For an arbitrary symmetric ponnozmal ¥ of degree
i > 0, there is a class (F) in H?(M,dM;C) whose image by j* in H%(M;C) is
the class (F). Also, for a symmetric polynomial ¢ of degree d > n — p, there are
classes ¢(TM,f) and 3(Q) in H**(M,dM;C) whose images by j* in H24(M;C)
are the classes o(TM) and (@), respectively, and one has:

(i) ¢(Q) is the sum of residues localized at the singular set S of F,

SE(Q) = Z Hx RestP(Z, -7:),

ZCcs

(ii) ¢(T'M,£) is of the form

@(TM,f) = E¢(f) pa-i(Q) + #(Q),

i=1

where v; and @; are symmetric polynomials of degree i, in particular ¥g = ¢ and
Yo = 1.

1.7 Remarks. 1. Theorems 1.1, 1.4 and 1.6 generalize, respectively, Lemma 2.1
(a), Theorem I and Lemma 2.1 (b) in [SS]. /

2. We are assuming that the k-frame f = {sy,...,54} on U, a neighbourhood of M,
is tangent to F; One may consider, more generally, frames f = {s4, ..., 8gyV1y ey Vr}
on U, where {s1,..., 34} is a g-frame tangent to F and {v, ..., v, } is an r-frame nor-
mal to F; In this case {s1, ..., 5,} determine relative classes ¢,(F,f), ..., ¢p—gt1(F, f)
of F, while {v1,...,v,} determine relative classes cp—p(Q, f), ..., Cn—p—r+1(Q, ). All
these relative classes amount to determine relative classes ¢, (M, f), ..., cn—k+1(M, f),
k = g+ r, and one has similar formulae to those in Theorem 1.4 above. (Note that
similar considerations are possible in §2 and §3 below.) If one tries to combine this
with the residue theory for general characteristic polynomials, one needs to have
on ) a connection D which is basic and trivial on the sub-bundle spanned by the
normal vector fields vy, ..., v,. This means that all the v;’s must be holomorphic and
the bracket [u, ;] must be in F for every u € F, i.e., the v;’s define infinitesimal

automorphisms of F. Such vector fields are I‘-vector fields for F in the sense of
[He].

§2 The Euler class for singular foliations on C* manifolds

We refer to [St,MS,Ke] for background on characteristic classes. Let M be
a compact, oriented, C'*° manifold of dimension n > 0 and E a vector bundle of
rank g over M, 0 < ¢ < n. The Euler class of E, e(E) € HY(M;Z), is the first
possibly non-zero obstruction for constructing a cross section of E. For instance, if
M has empty boundary and E = TM, then e(E)[M] = x(M). If the bundle E is
the direct sum of E; and F,, then one has the Whitney formula:

e(E) = e(E1) - e( E»).

9



We are also interested in considering extensions to M of cross sections given on a
sub-complex of M. More precisely, assume M has non-empty boundary OM, and let
s be a cross section of E|spr, the restriction of E to M. The first possibly non-zero
obstruction for extending s to the interior of M is a class e(E, s) in H4(M,0M;Z),
called the Euler class of E relative to s. The image of e(E, s) in the absolute
cohomology is e(E) independently of s, but as a relative class e(E,s) does depend
on the choice of s on M, generally speaking. For instance, if E is TM and s is a
cross section of T M|y, then one has,

e(TM, s)[M] = Ind(s, M),

where Ind(s, M) is the total Poincaré-Hopf index of s in M.

Let D be a C* field of oriented p-planes on M with singular set S contained
~ in the interior of M. By this we mean a smooth p-dimensional sub-bundle of TM
on M — S, where S is a subcomplex for some triangulation of M. One has the exact
sequence of the pair (M, M — §),

coo— HP(M, M — S) — HP(M) 5 HP(M — §) — HP Y\ (M, M — §) — --. .
By Alexander duality one has,
H?(M,M — S) ~ H,_p(S).

Thus, if H,_p(S) ~ Hpp—1(S) ~ 0, then i* is an isomorphism. Hence, there
exists a unique class in H?(M) whose image in H?(M — S) is the Euler class e(D).
Similarly, if we denote by D+ the orthogonal complement of D on M — S, with
respect to some riemannian metric, then the Euler class of D+ on M — S lives in
H""P(M—S;Z), which is isomorphic to H*~P(M; Z) whenever Hy(S) ~ H,_1(S) ~
0.

The following definition is given in [T] for fields of 2-planes with isolated
singularities, but the definition is appropriate in general.

2.1 Definition. Let D be a field of p-planes on M —S. I H,_,(S) ~ Hpp1(S) =~
0, then the Euler class of D is the unique cohomology class e(D) € H?(M;Z)
whose image in H?(M — S;Z) is the usual Euler class of D on M — S. If H,(S) ~
Hp_1(S) ~ 0, then the Euler class of D+ is the unique class in H"?(M;Z) whose
image in H?(M — S;Z) is the usual Euler class of D+ on M — S.

For instance, if the dimension of each connected component of S is strictly
less than n — p — 1, then the Euler class of D is well defined on all of M. If the
dimension of each component of § is strictly less than p — 1, then the Euler class of
D+ is defined on all of M.

Let Z be a connected component of S, and let N be a neighbourhood of
Z with smooth boundary K. Suppose we have on N — Z two non-singular vector
fields v and s, both contained in D. One has the following lemma:

10



2.2 Lemma. If either H,_,(K;Z) or H,_1(K;Z) vanishes, then v and s have the
same total index in N.

Proof. We can assume that N is a regular neighbourhood of Z with smooth bound-
ary K. We take another regular neighbourhood contained in the interior of N with
smooth boundary L. Then K and L bound a manifold C diffeomorphic to the
cylinder K x I. We define a vector field X on 8C as being v on K and s on L.
Then X can be extended to the interior of C' with no singularities if and only if
its total index in C is 0. Let D' be as above, and let e(D+) be the Euler class of
DL on C, let ¢(C; X) be the Euler class of C relatwe to X, and let (D, X) be the
relative Euler class of D on C. One has

Ind(X,C) = e(C, X)[C] = e(D, X) - e(D1)[C].

One has (D, X) € H?(C,0C;Z) ~ H,_,(K;Z) and ¢(D*) € H" ?(C;Z)
H,_1(K;Z). Hence, 1fe1therH n—p(K;Z) or Hy_(K; Z) vanishes, then Ind(X, C)
0 and 2.2 follows. O

2.3 Definition. Let D be as above and let Z be a connected component of the
singular set S. Let NV be a regular neighbouhood of Z with smooth boundary K.
Suppose that either H,_,(K;Z) ~ 0 or Hyp_1(K;Z) ~ 0, and suppose also that
there exists a non-singular vector field v on K which is contained in D. Then the
topological Euler residue of D at Z, TRes (D, Z) € Z, is the total index of v on
N.

R

Lemma 2.2 implies that TRes.(D, Z), when it is defined, depends only on
D and not on the choice of the vector field v. Note that from the exact sequence

= HP_AI(Z) — Hn-p(K) - Hn"P(Z) -

we see that, if, for example, the dimension of Z is less than n— p and p— 1, we have
Hp_p(K) =~ 0. Considering a similar sequence, we have also H,—;(K) ~ 0 under
the same condition.

2.4 Theorem. Let M be a closed, oriented, C* n-manifold and let D be a C* field
of oriented p-planes on M, singular on a set S which is a simplicial sub-complex
of M for some triangulation. Let Zi,...,Z, be the connected components of S.
Assume that for all « = 1, ..., one has:

(1) The dimension £, of Z, satisfies £y <n —p—1 and £, < p—1, and

(i) There exists a neighbourhood N, of Z,, with a non-singular vector field on
Ny — Z,, contained in D. Then :

(a) The Euler classes of both D and D+ are well defined on M.

(b) The topological Euler residue of D is well defined at each Z,.

(c) The Euler-Poincaré characteristic of M is given by:

x(M) = e(D) - e(DL)[M] + zT: TRes(D, Zq),

a=1

11



where [M] is the orientation cycle of M.

Proof. Statements (a) and (b) are already proved. For (c), we observe that one has:
(21) x(M) = e(M)[M] = e(M — Int N,v)[M — Int N] + ¢(N,v)[N],

where N = UN,. On M — Int N, D and D' are vector bundles, hence one has,

e(M — Int N, ’U)[M — Int N] = e(D|M—Int N,v) . e('DJ‘IM_[nt N)[M — Int N]
(22) = ¢(D) - e(D*)[M],

because the Euler classes (D) and ¢(D1) have support on M —Int N. By definition
one has,

(23) o(N,)[N] = 3" TRes,(D, Za).

Statement (c) of 2.4 follows from equations (2), (22) and (23). O

The extension of Theorem 2.4 to manifolds with boundary is immediate,
with essentially the same proof.

2.5 Theorem. Let M be a compact, oriented, C* n-manifold with boundary OM.
Let D be a C* field of oriented p-planes on M, singular on a set S contained in
~ the interior of M, which is a simplicial sub-complex of M for some triangulation.
Let Z,,...,Z, be the connected components of S. Assume that for all o = 1,...,r
one has:

(i) The dimension £, of Z, satisfies {o <n—p—1and £y, < p—1, and

(ii) There exists a neighbourhood N, of Z,, with a non-singular vector field on
Ny — Z, contained in D. Then :

(a) The Euler classes of both D and D are defined on all of M.

(b) The Topological Euler Residue of D is well defined at each Z,.

(¢) If X is a non-singular vector field on a neighbouhood of 0M and contained in
D, then the total index of X in M is given by:

Ind(X, M) = &(D, X) - (D) [ M] + Z TRese(D, Za),

where e(D,X) € HP(M,0M;Z) is the unique cohomology class that maps to the
Euler class of D on M — S relative to the vector field X on M.

12



§3 Characteristic classes for singular foliations on C'* manifolds

We now discuss the Chern classes for fields of complex planes with singu-
larities. We remark that all the results in this section are easily adapted to fields
of real planes as in §2 above, replacing the Chern classes by the Stiefel-Whitney
classes. The relationship with the residues in [SW] will be discussed elsewhere.

Let E be a complex vector bundle of rank ¢ over M, a smooth manifold
of dimension m, 2¢ < m. The top Chern class of E, ¢,(E) € H2(M;Z), is the
Euler class of E. To construct the Chern class ¢q—;(E) € H24"2(M;Z) we let
W, be the fibre bundle over M whose fibre at each point z € M is the Stiefel
manifold W, of complex 2-frames in the fibre E, of E over z; The manifold
Was,q is (2¢ — 4)-connected, and 734-3(W>4) ~ Z, by Bott’s computations of the
homotopy groups of the classical groups (see [Hu]). Hence, the first possibly non-
zero obstruction for constructing a section of W, 4 lives in H2972(M; Z), and this is
cq—1(E) by definition. In general, to construct the class ¢,—;(E) € H?4~%(M;Z),
t =0,..,¢—1, we form the fibre bundle W;; , whose fibre at each point is the Stifel
Manifold of complex (i + 1)-frames in the fibre E, ~ C9; c,_; is the first possibly
non-zero obstruction for constructing a section of W41 ,4. If the bundle E is the
direct sum of two complex bundles E; and E,, then one has the Whitney relations:
For each k£ = 1,..., ¢ one has,

ck(BE)= Y ci(Er)-ci(Ez).

i+j=k

If M has boundary OM and one has a complex k-frame f over the boundary,
then one has representatives of the Chern classes of E in the relative cohomology,
c¢i(E,f) € H*(M,0M;Z), whose image in H*(M;Z) are the usual Chern classes.
These are the Chern classes of E relative to the k-frame f.

Now suppose M is a compact, almost complex manifold of real dimension
2n, and D is a smooth field of complex p-planes on M, singular at a set S as in
§2 above. Let D1 be the complex orthogonal complement of D on M — S , with
respect to some hermitian metric. Thus DL is a field of complex (n — p)-planes
on M, singular at S. On M — S one has the usual Chern classes of D and DL,
¢i(Dlm-s) € H*(M — S) for i = 1,...,p, and ¢;(D*|y-s) € HY(M — S) for
J =1,...,n — p. As before, one has the exact sequence,

coo = H¥(M,M — S) —» H¥(M) — H¥(M = S) — H**' (M,M - §) — .-
Hence, if H*(M,M — S) ~ H*+Y(M,M — §) ~ 0, then in the appropiate ranges
of dimensions, any class c;(D|y—s) or ¢;(DL] M-s) will extend uniquely to a coho-
mology class on all of M. We observe that Alexander duality implies:
H¥(M,M — S) ~ Hyn_2i(S),  H**Y(M,M - S) ~ Hyp_2i_1(S).

Therefore one has the following lemma:
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3.1 Lemma. Let Z,,...,Z, be the connnected components of the singular set S,
and let £, =dim Z, fora=1,...,r. If

o <2n—2p—1,

for every a = 1,...,r, then all the Chern classes of D on M — S extend uniquely to
cohomology classes c;j(D) € H*(M;Z), j =1,...,p. If

by <2p—1,

for every a = 1,...,r, then all the Chern classes of D+ on M — S extend uniquely
to cohomology classes Cj(Y?J‘) € HzJ(M, Z),j=1,..,n—p.

Assume now that we have a complex 2-frame f = {s;,32}, on N — Z, where

Z is a component of S and N is a regular neighbourhood of Z with smooth boundary
K. This 2-frame defines relative Chern classes ¢;(N, f) € H?/(N,K;Z), j = n,n—1.

3.2 Proposition. Let {s;,s2} be as above and let g = {v;,v2} be another complex
2-frame on N — Z. Assume that both frames are contained in D. Let £ be the
dimension of Z. If £ < 2n — 2p and £ < 2p — 1, then the relative Chern classes
defined by f and g coincide:

cj(N’ f) =ci(N,8),

for j =n,n—1.

Proof. For j = n, 3.2 was proved in §2 above; We now prove 3.2 for the Chern
class ¢,—1. Let N' be a regular neighbourhood of Z contained in the interior of N
and with smooth boundary L. Then K and L bound a cylinder C diffeomorphic to
K x'I, and we have a 2-frame ® on 9C, given by f on K and g on L. One has,

en—1(C,®) = cp—1(D, ®) - crp(DL) + cp(D, ®) - cp—p—1(DF).

The class cp—p(D*) lives in H2"~2?(C) ~ H*"~2P(K) ~ H,p_1(K), which vanishes
because dim Z < 2n —2p, 2p—1 (see the remark right before Theorem 2.4). Hence,
cp—1(D, ®) - cp—p(D1) = 0. Similarly, c,(D,®) € H?(C,0C) ~ H**71(K) = 0.
Hence,

Cn_l(C, @) =0
and 3.2 follows. 0O

Just as in §2 above, lemma 3.2 allows us to define topological residues
corresponding to the Chern classes ¢, and c,—;:
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3.3 Definition. Suppose Z is a component of S such that:

(i) There exists a 2-frame f on the boundary K of a regular nelghbouhood Nof Z
contained in D, and

(ii) Hon—2p(K;Z) ~ Hyp_1(K;Z) ~ 0. Then one has well defined topological
residues of D at Z corresponding to the Chern classes ¢, and cp—1,

TRes.,(D,Z) € Hy(Z;Z) ~Z
TRes.,_,(D,Z) € Hy(Z;Z),

respectively. These are, by deﬁnition, the classes in
Hyi(Z) ~ Hyi(N) ~ H™ %(N,K), i=0,1,

determined by the Chern classes of N relative to the 2-frame f.

Assume now that we have a complex k-frame f = {s;,...,sx} on N — Z,
where Z is a component of S and N is a regular neighbourhood of Z with smooth
boundary K. This k-frame defines relative Chern classes c;(N,f) € H?*(N, K; Z),
J=mn,.,n—k+1 Iffis contained in D, and if g is another such k-frame, then
the difference between the Chern classes relative to f and g is given by the Chern
classes of C relative to the boundary 0C, where C is a cylinder as above and we
have on its boundary K UL, a k-frame ® which is f on K and g on L. Concermng
the classes ¢p—32, ..., Cn—k+1, One has:

cn-2(C, ®) =¢p(D, ®) - en—p—2(D*) + ¢p-1(D, @) - Cnp-1(D*)
+¢p—2(D, @) - cn—p(DF),

cn—3(C, @) =cp(D, ®) - Cn—p— 3(D'L)+cp 1(D, ®) - cn—p—2(D )
+cp-2(D, ®) - cnp—1(DF) + cp-3(D, @) - cayp(D)

and so on, up to

k—1
Cn-t41(C,®) = Y ¢pi(D, @) - cni—pris1(DL).

=0

~ Let £ be the maximal dimension of the components of S. If £ < 2p—1,2n—2p—1,
then in the above formulae, the first and last terms on the right hand side vanish,
but the middle terms may not be zero. Thus we need to ask for more: If £ < 2p— 3,
2n —2p—2, then ¢,—3(N,f) and c,—3(V, f) are also independent of f, they depend
only on D near Z, and one has well defined topological residues of D at Z,

TRes,,_,(D, Z) € Hy(Z;Z) ~ H™ (N, K; Z),
TRes.,_,(D, Z) € He(Z; Z) H> SN, K;Z),
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and so on.

We summarize the previous discussion in the following theorem. We let
M be a closed, 2n-dimensional almost-complex manifold, and let D be a field of
complex p-planes on M, whose singular locus S is a simplicial sub-complex of M
for some triangulation. Let Z,..., Z, be the connected components of S, and let £
be the maximal of the dimensions of the Z,’s.

3.4 Theorem. If{ <2p—1,2n—2p—1 then:
(1) One has Chern classes of D and D+,

¢j(D) € H¥(M;Z), j =1,...,p, and c;(D*) € H¥(M;Z), i =1, ....,n — p,

uniquely characterized by the fact that they map to the usual Chern classes of these
bundles under the inclusion homomorphism H*(M) — H*(M — S).

(ii) If there exists a vector field v, on a neighbourhood N, of each Zq, non-singular
on No—Z, and contained in D, then there exists for each Z, a well defined homology
class TRes., (D, Zy) € Ho(Za; Z) ~ Z, which depends only on D, and such that:

cn(M)[M] = cp(D) - cap(D)[M] + ) TResc, (D, Za).

a=1

(iii) I, mdreover, there exists on each N, — Z, a 2-frame contained in D, then there
exists a well defined homology class TRes.,_,(D,Zy) € H3(Zqa;Z), which depends
only on D, and if p, is the composition Hy(Zy;Z) — Hao(M;Z) — H?""2(M; Z),
then

cn-1(M) = ¢5(D) - ca—p-1(D*) + ¢5-1(D) - cn—p(D*) + zr: px TRese,_, (D, Za).

a=1

(iv) If the dimension of each Z, is even smaller, with respect to p and n — p, and
if there are more linearly independent vector fields around each Z, contained in D,
one has topological residues for lower Chern classes, and the corresponding formulae
relating these residues with the Chern classes of M.

We are also interested in the case when M is a compact, almost-complex
manifold of dimension 2n, with non-empty boundary M. Let D be a field of
complex p-planes on M, whose singular locus S is a simplicial sub-complex of the
interior of M. If the dimension of each component Z,,..., Z, of S is smaller than
2p — 1 and 2n — 2p — 1, then one has Chern classes of D and D+ as above,

¢;(D) € H¥(M;Z), j =1,...,p, and ¢;(DY) € H¥(M;Z), i =1,..,n —p,

characterized by the fact that they are the usual Chern classes on M —S. If one
has a k-frame X = (Xj,...,X) on a neighbourhood U of &M and contained in D,
then one has the correspondlng relative Chern classes ¢,—;(M, X ) and cp_,(D X ),
1=0,...,k—1.
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3.5 Theorem. With the above hypotheses and notation:

(i) If X is a 1-frame and if there exists a vector field v, on a neighbourhood N, of
each Zy, non-singular on Ny — Z, and contained in D, then there exists for each
Za, a well defined homology class TRes., (D, Zo) € Ho(Za;Z) ~ Z, which depends
only on D, and such that:

cn(M, X)[M] = (D, X) - ca—p(DH)[M] + > TRes., (D, Z,).

a=1

(ii) I, moreover, X is a 2-frame, and if there exists on each Ny — Z, a 2-frame
contained in D, then there exist well defined homology classes TRes.,_,(D,Z,) €
Hy(Zy; Z), which depends only on D, and if p, is the composition Hy(Zo;Z) —
Hy(M;Z) — H?"~2(M;Z), then "

cn-1(M, X) =¢p(D, X) - enp-1(D") + ¢p—1(D, X) - cn—p(D*)

+ Z px TResc, (D, Z,).

a=1

(i) FX is a k-fra.me, then one has a statement similar to part (iv) of Theorem 3.4
above.

§4 Applications to singular holomorphic foliations

We now let M be a complex n-manifold, and F is a p-dimensional holomor-
phic foliation with singular set S. Let Zi,..., Z, be the connected components of
S. Assume first that M is compact. Let c;j(F), ¢;(Q) € H¥(M;C), j = 1,...,n,
be respectively, the Chern classes of F and @, the normal sheaf. The following
theorem is immediate from Theorem 3.4 above. We note that in this case, each Z,
is a complex analytic space; Let £, be the complex dimension of Z,.

4.1 Theorem. (i) If {, < n —p and £, < p for all & = 1,...,r, then the Chern
classes

c1(F), - ¢p(F) and c1(@), .-y cn—p(@),

are characterized by the fact that on M — S, they are the usual Chern classes of TF
and NF, the bundles tangent and normal to F, respectively. In particular, these
classes are all integral. .

(i) If for each component Z, of S there exist a neighbourhood N, and and a
non-singular C* vector field v, on Ny — Z,, tangent to F, then:

X(M) = ca(M)[M] = cp(F) - cap(Q)[M] + ) TRes., (F, Za),

a=1
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and one has:

> TRese, (F, Za) = (Y ei(F) - enci @+ 3 cilF) - cami( @))[M].
a=1 =0 t=p+1

(iil) If on each Ny — Z,, one has a 2-frame tangent to F, then

n—1(M) = cp(F) : en—p-1(Q) + cp—1(F) - ca-p(Q) + Z tix TRese,,_, (F, Za).

a=1

(iv) If on each Ny — Z, one has a k-frame tangent to F, p > k > 2, and if the
- dimension of all Z,’s is even smaller with respect to p and n — p, then one has
similar formulae for the lower Chern classes:

k r
(M) =) ci(F) - cx-i(@) + Y s TResc, (F, Za)-
=0 a=1
One also has the equivalent of 4.1 for manifolds with boundary, which follows
from 3.5. Let M be an open complex n-manifold which is relatively compact in a
complex manifold; let OM be the boundary of M. Assume we have a non-singular
vector field X on a neighbourhood U C M of M, which is tangent to F, a p-
dimensional holomorphic foliation on M whose singular locus S does not intersect

U.

4.2 Theorem. (i) If the complex dimension of S is less than p and n — p, then
the relative Chern class c,(F, X), and the Chern classes ¢;(F), i = 1,...,p — 1 and
ci(@), 1 = 1,...,n — p, are characterized by being the usual Chern classes of the
bundles TF and NF on M — S. Hence they are integral.

(ii) If there exists a neighbourhood N of S and a continuous, non-singular vector
field v on N — S tangent to F, then

Tnd(X, M) = (M, X)[M] = ¢,(F, X) - enp(@IM] + 3 TRes., (7, Z2),

a=1

and

r p—1 n
> TResc, (F, Za) = (Y il F) - &a-i(@) + D, &(F) - ca-i(Q))[M],
a=1 =0 t=p+1 )
is the contribution of the singular set.
(iii) As before, if one has more vector fields on U and on N — S, then one has the
corresponding formulae for the lower Chern classes.

In 4.2 we can take M to be a neighbouhood of a connected component of
the singular set of a holomorphic foliation on some complex manifold. In particular
one has:
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4.3 Corollary. Let F be a p-dimensional holomorphic foliation on a complex n-
manifold M, n > p > 0, and let P be an isolated singularity of F. Let D be a small
ball around P in M, and suppose there exists on D a C* vector field v, singular
only at P and tangent to F. Then:

TRes,, (F, P) = é,(Fp)[D)] + Res,, (F, P),

where Res,,, (F, P) is the corresponding Baum-Bott residue. In particular, if F is
locally free at P, then Res,, (F, P) is integral and one has:

TRes., (F, P) = Res,, (F, P).

4.4 Remark. Let F be a p—dimensiohal holomorphic foliation on a complex n-
manifold and Z a compact component of the smgular set S. By [BSu] Theorem
(1.2), Res,,(F, Z) is an integral class for every i > n — p.

§5. The index of a vector field on a singular variety

Now let (V, P) be the germ of an isolated complete intersection smgulanty-
(ICIS), defined by k holomorphic funct1ons,

f=(f1,, fx) : (U cC"* P) - (C*,0),

and v a continuous vector field on V, singular only at 0, n > 0.

5.1 Definition. (The Schwartz index, cf. [Sc,BSc,KT]) If v is everywhere transver-
sal to the link K of P in V, its Schwartz index is 1. Otherwise, let T be a vector field
on V such that restricted to the link K =V N S,, it is the unit outwards-pointing
normal vector field of K in V. Let K' = V N S; be another link of P in V, with
6 < ¢, let C CV — {P} be the cylinder bounded by K and K’ and let X be the
vector field on OC which is 7 on K and v on K'. The difference between = and
v, d(T,v) € Z, is the total Poincaré-Hopf index of X in C. The Schwartz index
of v is:

S-Ind(v, P) =1 4+ d(r,v).

The integer d(7,v) measures “the lack of radiality” of v.

5.2 Definition. (The GSV-index, cf. [Se,GSV,BG,G,SS,LSS]) Suppose n > 1,
or n = 1 and V is irreducible, so that the link K of P in V is connected. “Let
Vfi,...,Vfr be the gradient vector fields of the functions that define V. Then
(v, Vfi1,..., Vfi)is a (k+1)-frame on all of U —{P}, which can be made orthonormal
by the Gramm-Schmidt process. Hence one has a map

(*) ('U,Vfl, avfk) K — Wk+1,k+n,
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where W1 k+n is the Stiefel manifold of complex, orthonormal (k + 1)-frames in
Cmtk. The homotopy groups m;(Wi41,k+n) are all zero for 1 = 0,1,...,2n — 2, and
Tan—1(Wk+1,k+n) = Z, see [Hu]. Hence the homotopy classes of maps from K into
Whi1,k4+n are classified by their degree. The GSV-index of v in V, Ind(v, P), is
~ the degree of the above map (*).

According to [GSV], Ind(v, P) is also described as follows. Let v’ be the
vector field on a neighbourhood N of the boundary of a nearby Milnor fibre F
obtained by pushing v by a local ambient isotopy carrying a neighbourhood of K
in V onto N. Then Ind(v, P) is equal to the total index Ind(v’, F') of v’ in F. Thus,
if v is transversal to K, we have

Ind(v, P) = 1+ (-1)"u,

where p is the Milnor number of V at P. (The above is proved in [GSV] only when
V is a hypersurface, but the same proof works in the higher codimensional case as
well with u defined as in [L].) When n = 1 and V may not be irreducible, we use
this process to define Ind(v, P), which is also how it is given in [B]. Therefore, in
general, one has:

5.3 Proposition. The Schwartz index and the GSV-index are related by the for-
mula,

Ind(v, P) = S-Ind(v, P) + (—1)"p.

We remark that if v is holomorphic, then its GSV-index (together with the
residues for general symmetric homogeneous polynomials of degree n) at P € V can
be defined via differential geometry [LSS], and if V' is a hypersurface, then this index
can also be defined via homological algebra [G]. The following theorem follows from
5.3 above and the fact [BSc] that the Schwartz index gives rise to the top Chern
class of a singular variety. We prove it here for completeness.

5.4 Theorem. (Poincaré-Hopf for singular varieties) Let V be a compact, local
complete intersection of dimension n, with isolated singularities P, ..., P.. Let v be
a continuous vector field on V, which is singular at the P;’s and possibly at some
other points Q1,...,Qs, which are smooth points of V. Let Ind(v,V) be the sum
of the local Poincaré-Hopf indices of v at the Q);’s and the GSV-indices of v at the
P;’s. Then,

Ind(v, V) = x(V) + (-1)" Z Hiy

independently of v, where x(V') is the Euler-Poincaré characteristic of V and p; is
the Milnor number of V' at its singular point P;.

Proof. Assume first that v is transversal to the link K; of P;, for all P;’s . We remove
from V small neighbourhoods B, ..., B, of the singular points; Then V* =V —UB;
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is a manifold with boundary 0V* = K; U --- U K, and v is transversal to 9V*.
Hence, by the theorem of Poincaré-Hopf for manifolds with boundary [M1], the
total index of v in V* is,

Ind(v, V*) = x(V*) = x(V) —r.
On the other hand, Ind(v, P;) = 1 4 (—1)"y;. Thus one has,

Ind(v, V) = x(V) + (-1)* Y _ s,
1=1

proving the theorem when v is transversal to V*. Now in general, we consider the
link K; with the vector field v|k,; For each P; we take a smaller link K| and we
put there a vector field 7{, normal to K} in V. So we have a cylinder C; ~ K; x I
for each ¢ = 1,...,r, whose boundary is K U K', and a vector field #; on 0C;, which
is v; on K; and 7] on K|. The index of 9; in C; is the above “difference” d(r;,v;).
. One has,

Ind(v, P;) = d(i,v;) + 1 4+ (=1)"p;.

On the other hand, we can form the manifold V* obtained by attaching to V* the r
cylinders K;; x I, and we have the vector field v’ on its boundary 8V* = K{U-- - UK.
One has, '

Ind(v, V*) = Ind(v', V*) — Z d(7i,v;),

=1
hence,
' Ind(v, V) = Ind(v, V*) + 3 Ind(v, )
i==l
= [Ind(v', V*) = > " d(ri, )] + [>_ d(ri,v:) + 1+ (=1)" 4]
i=1 =1

=X A A G ] = () A (D O

Now we give an application of Theorem 5.4. Assume that V is a local com-
plete intersection in some complex manifold W. Thus the normal bundle of its
regular part extends (canonically) to a vector bundle Ny on V. Suppose, further-
more, that V is a “strong” local complete intersection in the sense of [LS], i.e., Ny
still extends to a (C'°) vector bundle on a neighbourhood of V in W. This class of
varieties include, in particular, every hypersurface with a natural holomorphic ex-
tension of Ny (the line bundle on W determined by the divisor V'), every complete
intersection with a trivial extension of Ny and.every complete intersection in the
projective space CP"** with a holomorphic extension of Ny depending only on the
degrees of polynomials defining V. See [LS] for more details.
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5.5 Theorem. For a compact strong local complete intersection V of dimension n
with isolated singularities Py,..., P, in W, the Chern number c,(TW |y — Ny )[V]
of its virtual tangent bundle TWIV Ny is given by

nlTWly = N)V] = x(V) + (1" Y

This is a consequence of Theorem 5.4 and the following two lemmas.

5.6 Lemma. Let V be a complex analytic subvariety of dimension n > 0 with
isolated singularities Py,..., P, in a complex manifold W. Then there exists a C®
vector field v on V s1ngu]a.r at the P S and at a (. poss1b1y empty) finite set of other
points.

Proof. Tt follows from [M2] that there is a C* vector field X; on a neighbourhood
B; of each P; in W, which is singular only at P; and is tangent to V. Let D; = B;NV
and let v; be the restriction of X; to D;. Then V* =V — UT_, Int(D;) is a smooth
manifold with boundary, and the v;’s determine a non-singular vector field on the
boundary of V*. By elementary obstruction theory [St], this can be extended to a
C vector field on all of V*, with at most a finite number of singularities. [

Let V be'a strong local complete intersection in W and v a C*® vector
field on V' with singular set S (which contains the singular set of V). For each
compact component Z of S, we may define the virtual index v-Ind(v,Z) of v at Z
(see the proof of Lemma 5 in [LSS], where it is denoted by v-Indz(v)) so that, if V
i1s compact, we have

Z v-Ind(v, Z) = ¢, (TW|y — Ny)[V].
ZCs

Note that if Z is in the regular part of V, v-Ind(v, Z ) coincides with the total index
of v in a small neighbourhood of Z.

The following lemma is proved as [LSS] Lemma 5, noting that at the final
stage of its proof, the vector fields X and X may only be C* and that the holo-
morphic tangent and normal bundles are naturally identified with the corresponding
real bundles.

5.7 Lemma. Let P be an isolated singular point of a strong local complete inter-
section V in W and let X be a C* vector field in a neighbourhood of P in W,
which is singular only at P and is tangent to V. Then the virtual index at P of the
restriction v of X to V coincides with its GSV-index;

v-Ind(v, P) = Ind(v, P).
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5.8 Remarks. 1. Suppose dimW =2 and dimV =n = 1. If V is compact, from
the “adjunction formula” ([Ko] (2.2)), we have '

—x(V)=(Ew+V)-V - Zr:cpi(V).

i=1

Here V is a non-singular model of V, K is the canonical divisor of W and cp, (V)
is an invariant of V at the singular point P;, which is related to the Milnor number
pi by ¢p (V) = p; + 8; — 1 with s; the number of (local) branches of V at P;. Since
X(V) = i(si = 1) = x(V) and (Kw + V) -V = —c;(TW|y — Nv)[V], we see

that the formula in 5.5 is equiva.lent to the above formula.

2 If Visa complete 1ntersect10n in W = CP"tF, Nv is determmed by its multi-
degree (dy,...,dx) and we have

_ n+k+1
where h denotes the first Chern class of the hyperplane bundle and [ ],, the coef-

ficient of A" in [ ]. In particular, for a hypersurface V of degree d, we have, from
Theorem 5.5,

X(V) = 3 (1 =)+ (n+2)d 1) + (<1 Y

=1

Also, for a complete intersection V, 5.5 implies the following formula, which is
readily proved by a direct argument as well (cf. [D] Ch.5, Corollary (4.4)):

x(V) = x(Vo) + (=)™ 3 ",

i=]

where V} is a non-singular complete intersection in CP" ¥ of dimension n with the
same multidegree as V.

3. In [P], a generalized Milnor number is defined for each compact connécted
component of the singular set of a hypersurace and a formula for the sum of these
numbers is proved ([P] Proposition 1.6). The formula, which is given under the
assumtion that the ambient space be compact, coincides with the one in Theorem
- 5.5, if the singularities are isolated.

23



§6. The index for holomorphic foliations on singular varieties

Let (V, P) be an ISIC as before. We now consider a field D of complex p-
planes on V, singular only at P. Let D' be the normal bundle of D in V* = V—{P},
with respect to some riemanian metric, so D+ is a field of complex (n — p)-planes.

We let K be the link of P in V.

6.1 Lemma. Let v and s be continuous, nowhere zero vector fields on V. Assume

further that p # 7, -’-‘52'—1 or else that the link K is a homology sphere. If v and s

are both contained in D, then v and s have the same local GSV-index at P,

Ind(v, P) = Ind(s, P).

~ Proof. Let K, and K; be small links of P in V, § < ¢, and let C be the cylinder

bounded by K, and Ks. Let Z be the vector field on dC given by v on K, and s
on Ks. The tangent bundle of C splits as the direct sum of D|c and D+|c. Hence
one has,

e(TC,Z) = ¢(Dlc, Z) - ¢(D*|c),

where

B(ch, Z) € HZVp(C, aC) s H2n-.-2p(C) =~ H2n—2p(K)7

is the Euler class of D|¢ relative to Z and,
e(Dt|c) € H*(C) ~ H*"??(K) ~ H;p_1(K),

is the usual Euler class of D1|¢. The homology groups H;(K) are well understood
[M2,Ha], they are all 0 except (possibly) for ¢ = 0,n — 1,n. Thus, if 2p #n, n+1,
or if K is a homology sphere, then e(T'C,Z) = 0 and 6.1 follows. O

6.2 Definition. Let P be an isolated singularity of a field D of p-planes on V', with
2p # n, n+ 1. Assume that on a neighbourhood of D in V, there exists a nowhere
zero vector field v contained in D. The local GSV-index of D at P, Ind(D, P), is
the GSV-index of v at P. If F is a holomorphic foliation on V, singular only at P,
then its local GSV-index is the index of D = TF, the tangent bundle of F.

We remark that the index of D is not always defined: We need to have a
vector field v as above, but if there exists one such v, then the index of D does not
depend on the choice of v, by 6.1. This condition is always satisfied for foliations
given by the action of a (complex) Lie group, or more generally, for foliations which
are free at P. We note that if P is a regular point of V, then the local index of D
is the topological Euler residue of §2 above.

6.3 Definition. Let (V, P) and (V', P) be n-dimensional ICIS in C"**¥, defined by
holomorphic functions

fis f2: (U CC***, P) — (C*,0),
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on an open set U of C***. We say that the germs at P of f; and f, are topologi-
cally equivalent if there exists an orientation preserving local homeomorphism %
of U around 0 such that '

fa=fioh.

“h is called a topological equivalence between these two germs.

6.4 Definition. Let (V, P) and (V’, P) be n-dimensional ICIS in C*** and let F
and F' be p-dimensional holomorphic foliations on V and V', respectively, singular
only at P. These two foliations are topologically equivalent at P if there exists
a topological equivalence h between (V, P) and (V', P) taking the leaves of F onto
the leaves of F'.

6.5 Theorem. The local GSV-index of a holomorphic foliation F on an ICIS (V, P)
is a topological invariant. This is, if F' is a holomorphic foliation on an ICIS (V', P)
and F' is topologically equivalent to F, then: ‘

(i) The GSV-index of F at P is defined if and only if the GSV-index of F' is defined.
(ii) If these indices are defined, then one has:

Ind(F, P) = Ind(F, P).

The proof of this theorem is analogous to the proof of theorem 4.5 in [GSV].
The idea is to state the problem in the appropriate category: A homeomorphism
does not carry a vector field onto a vector field, but it does carry a flow onto a flow;
So we discuss first how the concept of index extends to flows [GSV]:

6.6 Definition. Let {¢:}, t € R, be a continuous flow on an open set U C R™,
m > 1, and assume 0 € U is an isolated stationary point of {p;}, i.e., ¢+(0) = 0 for
all ¢ and there exists a neighbourhood N of 0 and a time sy > 0 such that ¢,(z) # z
for every z € N — {0} and t € (0,s0). Let S. € N be a sphere of radius ¢ and
centered at 0, for some fixed ¢ > 0. Then the index of {(.}, denoted Ind{y,}, is
the degree of the map

‘Pt(x) — T m—1 m
®,. =t S, S c R™,
vel®) = o) =l %

for some fixed t € (0, s¢).

It is shown in [GSV] that this definition does not depend on the choice of ¢
nor ¢, and the sphere S, can be taken to be any topological (m —1)-sphere embedded
in N containing 0 in the bounded component of its complement. If the flow {¢,} is
differentiable, then its index equals that of its tangent vector field. ‘

We now let {y:} be a continuous flow on an ICIS (V, P) with an isolated
stationary point at P. We construct a vector field X on the link K of P in V by
joining each ¢ € K with the point ¢.(z), and projecting it orthogonally to a tangent
vector field X of V over K. The index of {¢;}, denoted Ind({i:}, P), is the index
of X. The proof of the following lemma is a mimic of the proof of Lemma 6.1 above,
so we leave it to the reader:
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6.7 Lemma. Let F be a holomorphic foliation on (V, P), and let {¢:} be a con-
tinuous flow on (V, P) with an isolated stationary point at P, for which the leaves
of F are invariant sets. Then

Ind({¢:}, P) = Ind(F, Pj.

Let us now prove Theorem 6.5: Assume the index of F at P is defined,
so one has a non-singular vector field X on V — {P}, tangent to F. Let {¢;} be
the flow of X and define a flow {¢:} on V' by {¢:} = {hp:h~1}, where h is a
topological equivglence between F and F'. Then the orbits of {1;} are contained
in the leaves of ' and {¢;} has a single stationary point at P, hence the index of
- F' at P is defined. Let us now prove that the indices of F and F' coincide. for this

we move the vector field X by an isotopy to obtain a non-singular vector field on a

“neighbourhood of the link K on a Milnor fibre F of V. We extend X to a vector
field on all of F with isolated singularities (which is always possible by elementary
obstruction theory). The sum of all the local indices of X on F' equals the index
of F. Now, the homeomorphism h carries the flow {¢;} of X on F to a continuous
flow {¢:} = {he:h™1} on a Milnor fibre F' of V'; The singularities of X on F go to
singularities of {¢;:} on F’, and the sum of the local indices of {11} is the index of
F'. Thus we only have to prove that the local index of {¢;} at a stationary point
Qi equals the local index of {1} at the stationary point h(Q;), but this is lemma
4.2in [GSV]. O '

Since the local index of a field of planes D at a singular point P of V is
actually given by the local index of a vector field, all the formulae of [GSV, BG, G,
SS, LSS] apply for the index of D. In particular, let (V, P) be an ICIS of dimension
n, let F be a p-dimensional holomorphic foliation on V — {P}, and let v be a
continuous vector field on V, singular only at P and tangent to F. Let 7: V — V
be a resolution of P, let F be the strict transform of F in V, and let X be the
lifting of v to V* = V — 771(P). The following theorem, which is a generalization
of Theorem III in [SS], is a consequence of Theorem II of [SS] together with Theorem
1.4 above.

-1 k—lB .
6.8 Theorem. Let n = 2k be even, and let q,, = ﬁ—)————zk! L where By, is the k-th
Bernoulli number, be the coefficient of ¢, in the n-th Todd polynomial, see [Hi].
Suppose p # k and F is locally free. Then:

Ind(F, P) =cp(F, X) - cnp(@)V1+ D Y caci(F) ~Resy,(F,2)
ZCS i=n.—p+1

1, s
+ TV p,),

where the sum runs over the connected components of the singular set S of F,
Resq;(F,Z) are the corresponding Baum-Bott residues, Q is the normal sheaf of
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F, p, is the geometric genus of P, and Td*[V] is the n-th Todd polynomial in the
relative Chern numbers of V relative to some (any) trivialization of TV|‘-,.,, but

taking ¢, = 0. In particular, if some component of S consists of an isolated point
Py, then

0, fort=n—-—p+1,...,n—1

o ~’P = ' ;
Resoi(F, Fo) {Ind(f,Po), fori = n.

For instance, if n = 2 then ¢, = 11—2 and g,-Td*[V] is K2, the self-intersection
number of the canonical class of V. Of course this formula is also valid when V is
regular at P and V is the result of performing finitely many blow-ups over P; in this
case the formula is a little simpler because the genus p, is zero. Note that, without
the assumption p # k, the right hand side of the equality in 6.8 gives Ind(v, P), the
GSV-index of v at P. If F is not locally free in 6.8, then the sum on the right must
also include the products of the higher classes of F, ¢;(F), i > p, by classes of Q.
We also note that the right hand side of 6.8 can be expressed in terms of the above
“topological residues” using Theorem 4.2.
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